多級(jí)孔ZSM-5的合成及其在甲醇制芳烴(MTA)中的應(yīng)用
[Abstract]:Aromatics, which are widely used in industry, mainly depend on the traditional gasoline derivation technology. Because of our country's rich coal and less oil and serious shortage of domestic production capacity, the aromatics in our country are mainly dependent on imports. Based on the above reasons, the domestic aromatics supply and demand relationship is seriously unbalanced and the price is also high, a new aromatics non petroleum production process is sought. With the rapid development of methanol industry in China and the rapid development of methanol production capacity, the development of methanol production technology is far from the speed of methanol development. At present, the production of methanol equipment is low and the price is low. The downstream process of methanol development is also urgent. The aromatics process which has been developed by methanol is very good in recent years. It also alleviates the contradiction between the supply and demand of methanol and aromatics, which is also of great strategic significance to our country. At present, the reaction of methanol to aromatic hydrocarbons is mainly BTX (benzene, toluene, xylene), the selectivity of BTX is not high, and the stability of the catalyst is not strong. At present, the method of metal loading is mainly used to solve the problem of low selectivity of the catalyst. At present, the effect of load Zn is at present. Because of the ambiguity of the reaction mechanism, the study of BTX selectivity related problems encountered serious bottlenecks. On the other hand, the researchers mainly adopted mesoporous methods to solve the problem of catalyst stability. However, further research still needs to be done. In the direction, we tried to use glycogen or phenyl triethoxy silane as a template to prepare multilevel pore ZSM-5, so as to expect its excellent performance in methanol aromatics. First, we tried to prepare multilevel hole ZSM-5 by using glycogen as a template and explore its performance in methanol to aromatics,.XRD characterization results and molecular sieves. The crystallinity was not greatly influenced by the presence of glycogen; the results of N_2 adsorption desorption showed that glycogen did promote mesoporous formation; SEM results showed that the presence of glycogen hindered the dimension of crystal growth and changed the morphology of the crystal, which was also probably the deep cause of glycogen to facilitate mesoporous formation; NH3- TPD results show that glycogen also affects the formation and intensity distribution of molecular sieve acid. The performance of glycogen in methanol to aromatics is also compared. The results show that the stability of the catalyst is not very obvious. This is probably due to the poor water solubility of the hard template glycogen, which can not be very good during the crystallization process. It is close to the precursor so that the mesoporous pores can not be well close to the crystal surface, and it is difficult to improve the mass transfer by improving the selection rate of.BTX from 19.55% to 23.84%, which is probably due to the acid properties and the larger mesoporous surface area. In order to avoid the problem of the easy phase separation caused by the poor water solubility of the above hard templates, this topic selected the phenyl triethoxy silane which is not easy to separate from the precursor (water solubility) as a template. This topic is a successful preparation of the template. The multilevel hole ZSM-5 has shown good catalytic performance in the reaction of methanol to aromatics. The relationship between the addition amount of the modulating agent and the catalytic performance is also explored in this paper. It is found that the stability of the catalyst increases first and then decreases with the increase of the amount of the template, and the life span of the catalyst is up to the highest. To 126 h, the selection rate of BTX increased gradually, up to 33.01%. in order to find the reasons for the catalytic performance of the catalyst. A series of analysis and characterization of.N_2 adsorption desorption showed that the number of mesoporous and the surface area of the mesoporous ratio showed the same trend as the stability of the catalyst. SEM and NH3-TPD results also showed that it did also affect the morphology and acid properties of molecular sieves. XRD results showed that a proper amount of templates had no significant influence on the crystallinity of molecular sieves, but the crystallization of molecular sieves was obviously affected when they were excessive. Silane is well water-soluble and also participates in the construction of molecular sieve framework. This subject grafted the organic group (benzene ring) on the surface of molecular sieve through this material. It is good to avoid phase separation. The mesoporous mesopore introduced in this way can improve the mass transfer of the catalyst so as to enhance the stability of the catalyst.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ241;O643.36
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 譚恒俊;;我國(guó)化工甲醇行業(yè)現(xiàn)狀與發(fā)展建議[J];科技資訊;2012年20期
2 李光玉;;關(guān)于甲醇前景新的市場(chǎng)分析[J];天然氣化工(C1化學(xué)與化工);1983年05期
3 房鼎業(yè);孫啟文;;甲醇系列產(chǎn)品的開發(fā)與應(yīng)用[J];化肥工業(yè);1992年03期
4 王衛(wèi)華;熊瑞皋;王貴生;董松春;;甲醇及其下游產(chǎn)品發(fā)展前景[J];河南化工;1993年05期
5 ;市場(chǎng)透視[J];江蘇化工;2000年11期
6 ;全球甲醇工業(yè)將面臨疲軟[J];天津化工;2000年02期
7 李好管;甲醇下游產(chǎn)品開發(fā)及技術(shù)進(jìn)展[J];化工科技市場(chǎng);2001年05期
8 ;專家提出甲醇工業(yè)發(fā)展建議[J];河南化工;2002年02期
9 李素君;甲醇下游產(chǎn)品的開發(fā)和應(yīng)用[J];遼陽(yáng)石油化工高等專科學(xué)校學(xué)報(bào);2002年02期
10 ;“大甲醇”技術(shù)及其應(yīng)用[J];化肥設(shè)計(jì);2003年01期
相關(guān)會(huì)議論文 前2條
1 雷智平;水恒福;王知彩;任世彪;蔣京熹;;甲醇在改性HZSM-5上制芳烴的研究[A];蘇、魯、皖、贛、冀五省金屬學(xué)會(huì)第十五屆焦化學(xué)術(shù)年會(huì)論文集(下冊(cè))[C];2010年
2 杜雯雯;王業(yè)勤;吳素娟;;甲醇制氫技術(shù)研究及應(yīng)用——四川亞聯(lián)高科技股份有限公司甲醇制氫新技術(shù)[A];2013年年會(huì)暨工業(yè)氣體供應(yīng)技術(shù)論壇論文集(上海)[C];2014年
相關(guān)重要報(bào)紙文章 前10條
1 本報(bào)記者 陳繼軍;甲醇企業(yè)吁請(qǐng)加大反傾銷力度[N];中國(guó)化工報(bào);2010年
2 張申戰(zhàn);甲醇工業(yè)極具發(fā)展?jié)摿N];今日信息報(bào);2003年
3 王亞麗邋王瑞娟;甲醇:五個(gè)風(fēng)險(xiǎn)四大關(guān)鍵求解[N];中國(guó)化工報(bào);2007年
4 呼躍軍;三大利空導(dǎo)演甲醇高臺(tái)跳水[N];中國(guó)化工報(bào);2008年
5 記者 張興剛;中國(guó)將成國(guó)外甲醇重點(diǎn)出口地[N];中國(guó)化工報(bào);2008年
6 鐘華;國(guó)內(nèi)甲醇建設(shè)高燒不退[N];中國(guó)工業(yè)報(bào);2005年
7 蔡恩明;甲醇產(chǎn)業(yè)投資過(guò)熱隱憂多[N];中國(guó)石化報(bào);2005年
8 張瑞和;甲醇產(chǎn)業(yè)損害預(yù)警機(jī)制當(dāng)早起動(dòng)[N];中國(guó)石化報(bào);2007年
9 馮秀芳;國(guó)內(nèi)外甲醇工業(yè)的現(xiàn)狀及市場(chǎng)[N];經(jīng)理日?qǐng)?bào);2007年
10 中國(guó)氮肥工業(yè)協(xié)會(huì);中國(guó)甲醇工業(yè)現(xiàn)狀及“十二五”發(fā)展規(guī)劃解讀[N];期貨日?qǐng)?bào);2011年
相關(guān)博士學(xué)位論文 前1條
1 虞賢波;移動(dòng)床甲醇制丙烯反應(yīng)工藝的研究[D];浙江大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 陳麗;鈀摻雜及氧的預(yù)吸附對(duì)鉑催化甲醇脫氫反應(yīng)的理論研究[D];華南理工大學(xué);2015年
2 王贏權(quán);非熱平衡等離子體—催化劑條件下甲醇的選擇性反應(yīng)[D];鄭州大學(xué);2015年
3 李盈;離子液體中甲醇電化學(xué)氧化合成二甲氧基甲烷的研究[D];哈爾濱師范大學(xué);2016年
4 張悅;甲醇四塔精餾流程模擬及塔器選型分析[D];華東理工大學(xué);2017年
5 盧勤斌;年產(chǎn)3萬(wàn)噸甲醇增產(chǎn)技術(shù)改造的工藝設(shè)計(jì)[D];四川大學(xué);2007年
6 毛司理;天然氣制甲醇生產(chǎn)工藝優(yōu)化[D];大連理工大學(xué);2012年
7 楊光輝;間歇精餾法制備高純甲醇的研究[D];天津大學(xué);2006年
8 曲文凱;基于膜分離技術(shù)的甲醇精制過(guò)程模擬與優(yōu)化[D];青島科技大學(xué);2014年
9 劉明剛;低溫液相合成甲醇銅鉻催化劑制備及合成工藝的研究[D];四川大學(xué);2003年
10 張國(guó)強(qiáng);甲醇重整內(nèi)燃機(jī)復(fù)合循環(huán)[D];中國(guó)科學(xué)院研究生院(工程熱物理研究所);2006年
,本文編號(hào):2174091
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2174091.html