基于統(tǒng)計機(jī)器學(xué)習(xí)的光譜識別技術(shù)
[Abstract]:With the launch of satellites, manned spaceships and international space stations, space target recognition is a prerequisite for the further development of space resources. It is very important to recognize the surface material of the space target effectively for the further recognition of the target. The scattering spectrum can effectively characterize the surface characteristics of the measured samples. Statistical machine learning provides a technical means to solve the problem of difficult classification and identification between samples. In this paper, based on scattering spectrum and four statistical machine learning algorithms, the recognition of spatial target materials is studied. The specific contents of the study are as follows: 1. The material scattering spectrum measurement system is set up, which can measure the scattering spectrum of material with multiple angles. The measured scattering spectra are preprocessed into three parts: denoising, calculating the bidirectional reflectance distribution function and normalization, and the material database. 2. Based on the theory of scattering spectrum and statistical machine learning algorithm, the algorithm framework of naive Bayesian classifier K nearest neighbor algorithm, error back propagation neural network and convolution neural network is established, and the program of. 3 is implemented by using MATLAB software. Based on scattering spectrum, combined with naive Bayesian classifier and K-nearest neighbor algorithm, error back-propagation neural network and convolution neural network, the pre-processed material scattering spectrum was classified and recognized. The recognition results are compared and analyzed. The results show that: (1) when the inclusion cosine and Euclidean distance are embedded in the K-nearest neighbor algorithm, because the linear and amplitude characteristics of the spectrum are taken into account, it has the characteristics of high precision and less time consuming. This method has some applicability in the field of recognition based on scattering spectrum. (2) because of the special network structure, the convolution neural network has the characteristics of less time consuming and higher precision. It has some advantages and applicability which is different from other methods.
【學(xué)位授予單位】:長春理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:V419;O657.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王安祥;吳振森;曹運華;;硅太陽能電池板的光譜BRDF測量及色度特性的研究[J];紅外與激光工程;2013年11期
2 于洋;郝中騏;李常茂;郭連波;李闊湖;曾慶棟;李祥友;任昭;曾曉雁;;支持向量機(jī)算法在激光誘導(dǎo)擊穿光譜技術(shù)塑料識別中的應(yīng)用研究[J];物理學(xué)報;2013年21期
3 徐姍姍;劉應(yīng)安;徐f;;基于卷積神經(jīng)網(wǎng)絡(luò)的木材缺陷識別[J];山東大學(xué)學(xué)報(工學(xué)版);2013年02期
4 韓意;孫華燕;;空間目標(biāo)光學(xué)散射特性研究進(jìn)展[J];紅外與激光工程;2013年03期
5 楊長才;田金文;葉瑾;尚軻;田昕;;天基光學(xué)成像系統(tǒng)空間目標(biāo)成像模擬技術(shù)[J];紅外與激光工程;2012年09期
6 劉正春;曾永年;何麗麗;吳孔江;靳文憑;;基于光譜歸一化的變組分光譜混合分析(NMESMA)方法及其應(yīng)用[J];遙感技術(shù)與應(yīng)用;2012年02期
7 楊玉峰;吳振森;曹運華;;一種實用型粗糙面六參數(shù)雙向反射分布函數(shù)模型[J];光學(xué)學(xué)報;2012年02期
8 袁艷;孫成明;黃鋒振;趙慧潔;王潛;;深空背景下空間目標(biāo)紫外特性建模方法研究[J];物理學(xué)報;2011年08期
9 孫成明;袁艷;張修寶;;深空背景下空間目標(biāo)紅外特性建模方法研究[J];物理學(xué)報;2010年10期
10 袁艷;孫成明;張修寶;趙慧潔;王潛;;姿態(tài)變化對空間目標(biāo)可見光特性的影響分析[J];光學(xué)學(xué)報;2010年09期
相關(guān)博士學(xué)位論文 前1條
1 陳國慶;熒光光譜技術(shù)在食品安全監(jiān)控中的應(yīng)用研究[D];江南大學(xué);2010年
相關(guān)碩士學(xué)位論文 前1條
1 白玉兵;復(fù)雜環(huán)境下雷達(dá)探測范圍可視化研究[D];湖南大學(xué);2013年
,本文編號:2172948
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2172948.html