天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 化學論文 >

近紅外發(fā)光雙稀土—有機框架材料的設計合成及其熒光溫度傳感

發(fā)布時間:2018-07-26 14:03
【摘要】:溫度是生理學和病理學研究的一個重要參數,細胞內大多數生物分子之間的反應過程,例如:細胞凋亡、神經信號傳遞、離子輸運等,都受到溫度的影響。相較于傳統(tǒng)的接觸型溫度傳感器,如熱電偶、水銀溫度計等,熒光溫度傳感由于具有非接觸、響應速度快、靈敏度高、不易受強的電磁場干擾及可應用于快速移動的物體和小尺寸物體等優(yōu)勢,受到了廣泛關注。而基于雙發(fā)光中心的比例型熒光溫度傳感由于不會受探針濃度、發(fā)光中心的不均勻性、激發(fā)光源和探測器的光電漂移等外部因素的影響,具有較高的靈敏度和準確度,是當前的研究熱點。本文針對近紅外光具有不受生物組織自熒光干擾、對生物組織損傷較少、穿透深等特點,利用金屬-有機框架材料可設計性強的優(yōu)勢,引入具有近紅外發(fā)光特性的雙稀土離子,設計合成了三種雙金屬混合配位的稀土-有機框架材料,開展生理溫度附近的比例型熒光溫度傳感研究。主要研究內容與結果如下:以近紅外發(fā)光稀土離子Nd3+、Yb3+與有機配體H3BTC(均苯三羧酸)配位,制備了一系列稀土-有機框架材料LnBTC(Ln=Nd, Yb, NdxYbi-x)。在室溫條件下對LnBTC(Ln=Nd, Yb, NdxYbi-x)的近紅外熒光性能進行研究,發(fā)現以Nd3+吸收峰808 nm激發(fā)Nd0.054Yb0.946BTC時,該材料同時表現出Nd3+以及Yb3+的特征發(fā)射峰;在該波長激發(fā)下研究Nd0.054Yb0.946BTC在288~323 K溫度范圍內的變溫熒光光譜,結果顯示該材料中Nd3+和Yb3+的發(fā)光強度之比(INd/IYb)與溫度之間具有較好的線性關系,相對靈敏度達0.830~1.187% K-1,可以實現生理溫度熒光傳感。以H2BDC-F4(四氟對苯二甲酸)為配體設計合成了一系列近紅外發(fā)光稀土-有機框架材料LnBDC-F4(Ln=Nd, Yb, NdxYbi-x)。由于配體中以低聲子能的C-F鍵取代C-H鍵,有效地減弱了對近紅外光的淬滅,使得配體可以通過“天線效應”向稀土離子傳能使其發(fā)光。在配體吸收峰303 nm激發(fā)下,LnBDC-F4(Ln=Nd, Yb, NdxYbi-x)發(fā)射光譜中均具有相應的稀土離子的特征發(fā)射峰,且Nd0.711Yb0.289BDC-F4中Nd3+和Yb3+的特征發(fā)光強度之比(INd/1Yb)在60~280 K低溫區(qū)域內與溫度之間具有較好的線性關系,可應用于低溫熒光溫度傳感。此外,在808nm近紅外光激發(fā)下,納米尺寸的Nd0.577Yb0.423BDC-F4中Nd3+和yb3+的發(fā)光強度之比(INd/IYb)在293~313 K溫度范圍內與溫度呈良好的線性關系,相對靈敏度達0.967-1.201% K-1,表明該材料可應用于生理溫度熒光傳感。以H3BTB(1,3,5-三(4-羧基苯基)苯)為配體制備了具有較高靈敏度的近紅外發(fā)光溫度傳感材料Nd0.866Yb0.134BTB,該材料在303~333 K溫度范圍內Nd3+和Yb3+的特征發(fā)光強度之比(INd/lYb)與溫度呈較好的線性關系,且相對靈敏度達2.090~4.755% K-1,遠高于Nd0.054Yb0.946BTC和Nd0.577Yb0.423BDC-F4。此外,該材料在水以及生理緩沖液中均較為穩(wěn)定,且生物毒性也較小,表明該材料在細胞溫度傳感中具有較大的應用前景。
[Abstract]:Temperature is an important parameter in the study of physiology and pathology. The reaction process between most of the cells in cells, such as cell apoptosis, neural signal transmission, ion transport and so on, is affected by temperature. Compared to the traditional contact temperature sensors, such as thermocouples, mercury thermometers, and so on, the fluorescence temperature sensing is due to Non contact, fast response, high sensitivity, not easy to be affected by strong electromagnetic interference and the advantages of fast moving objects and small size objects, has attracted wide attention. And the proportional fluorescence temperature sensing based on double luminescent center will not be affected by the concentration of the probe, the inhomogeneity of the luminescent center, and the photoelectricity of the light source and detector. The influence of excursion and other external factors, with high sensitivity and accuracy, is a hot spot of research. In this paper, near infrared light is not affected by biological tissue autofluorescence interference, less damage to biological tissue, penetration depth and so on, using the advantages of strong design of metal organic frame materials and the introduction of near infrared luminescence characteristics. Rare earth ions, designed and synthesized three kinds of bimetallic mixed ligand rare earth organic frame materials, and carried out a proportional fluorescence temperature sensing study near the physiological temperature. The main contents and results are as follows: a series of rare earth organic frames are prepared by the coordination of near infrared luminescent rare earth ions Nd3+, Yb3+ and organic ligand H3BTC (benzol three carboxylic acid). LnBTC (Ln=Nd, Yb, NdxYbi-x). At room temperature, the near infrared fluorescence properties of LnBTC (Ln=Nd, Yb, NdxYbi-x) are studied. When the Nd3+ absorption peak 808 nm excite Nd0.054Yb0.946BTC, the material exhibits both Nd3+ and characteristic emission peaks at the same time. Under this wavelength, the temperature is studied at the temperature of 288~323. In the range of temperature changing fluorescence spectra, the results show that the luminescence intensity ratio of Nd3+ and Yb3+ (INd/IYb) has a good linear relationship with the temperature, and the relative sensitivity is 0.830 to 1.187% K-1, and the physiological temperature fluorescence sensing can be realized. A series of near infrared light luminescence is designed and synthesized with H2BDC-F4 (tetrafluoroethyl two methylene acid) as the ligand. Soil organic frame material LnBDC-F4 (Ln=Nd, Yb, NdxYbi-x). Due to the substitution of the C-F bond with the low phonon energy of the C-H bond in the ligand, the quenching of the near infrared light is effectively weakened, so that the ligand can light it through the "antenna effect" to the rare earth ion energy. Under the ligand absorption peak 303 nm, the emission spectra of LnBDC-F4 (Ln=Nd, Yb, NdxYbi-x) The characteristic emission peaks of the corresponding rare earth ions are all of them, and the ratio of the characteristic luminescence intensity of Nd3+ and Yb3+ in Nd0.711Yb0.289BDC-F4 (INd/1Yb) has a good linear relationship with the temperature in the low temperature region of 60~280 K. It can be applied to the temperature sensing of low temperature fluorescence. In addition, the nanometer size Nd0.577Yb0.423 under the near infrared light excitation of 808nm. The ratio of luminescence intensity of Nd3+ and yb3+ (INd/IYb) in BDC-F4 has a good linear relationship with the temperature in the temperature range of 293~313 K, and the relative sensitivity is 0.967-1.201% K-1, indicating that the material can be applied to physiological temperature fluorescence sensing. The near infrared luminescence temperature with high sensitivity is prepared with H3BTB (1,3,5- three (4- carboxy phenyl) benzene) as ligand. Degree sensing material Nd0.866Yb0.134BTB, the ratio of the characteristic luminescence intensity of Nd3+ and Yb3+ at 303~333 K temperature range (INd/lYb) has a good linear relationship with the temperature, and the relative sensitivity is 2.090 to 4.755% K-1, far higher than that of Nd0.054Yb0.946BTC and Nd0.577Yb0.423BDC-F4., and the material is both in water and in the physiological buffer solution. It is stable and has little biological toxicity, which indicates that the material has great application prospects in cell temperature sensing.
【學位授予單位】:浙江大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:O627;TQ422

【相似文獻】

相關期刊論文 前10條

1 李善有,張義;管式爐連續(xù)加熱的溫度測量方法[J];機械工人(熱加工);1990年04期

2 楊世校;廖德慶;尤亞平;;裂解爐輻射爐管溫度測量方法的改進[J];石油化工設備技術;1992年01期

3 ;高溫氣體的溫度測量方法[J];化工自動化及儀表;1974年01期

4 ;磨削區(qū)溫度測量方法的研究[J];上海紡織工學院學報;1979年04期

5 柳鴻星;馬明恕;;平爐爐頂溫度測量方法的改進[J];鋼鐵;1965年06期

6 胡和明;;氣化爐溫度測量方法的改進[J];化工自動化及儀表;1983年06期

7 張衛(wèi)華;冰銅溫度測量方法研究[J];江西銅業(yè)工程;1999年04期

8 劉文凱;張立武;;薄壁圓筒件車削溫度測量方法研究[J];機械設計與制造;2008年08期

9 樸大植;實用顏色溫度測量方法的研究[J];現代計量測試;1999年01期

10 高小兵,,王麗,張佳心;火焰電子溫度測量方法的改進[J];燃燒科學與技術;1995年03期

相關會議論文 前1條

1 楊國騰;于艷華;杜永強;;聚合物基復合材料玻璃化轉變溫度測量方法的研究[A];面向航空試驗測試技術——2013年航空試驗測試技術峰會暨學術交流會論文集[C];2013年

相關碩士學位論文 前10條

1 練秀生;近紅外發(fā)光雙稀土—有機框架材料的設計合成及其熒光溫度傳感[D];浙江大學;2016年

2 李鵬;基于吸收光譜氣體溫度測量方法的研究[D];燕山大學;2009年

3 張桂敏;易燃易爆環(huán)境中的溫度測量技術研究[D];長春理工大學;2014年

4 蒙建平;瞬態(tài)熱輻射譜的時間分辨測量及其溫度解析方法與技術研究[D];四川大學;2001年

5 李松林;非接觸人體表面溫度測量方法的研究[D];天津大學;2005年

6 張維克;爆炸場溫度的多譜線測試方法研究[D];南京理工大學;2009年

7 萬相奎;虛擬式多通道溫度測試儀的設計與研發(fā)[D];重慶大學;2002年

8 張洪林;金剛石對頂砧原位溫度測量方法的實驗研究[D];吉林大學;2008年

9 方榮瑞;PCR儀溫度檢測及校準規(guī)范研究[D];中國計量學院;2012年

10 林立軍;基于超聲技術的氣體溫度測量方法的研究[D];燕山大學;2004年



本文編號:2146252

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxue/2146252.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶404b6***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com