近紅外發(fā)光雙稀土—有機框架材料的設(shè)計合成及其熒光溫度傳感
[Abstract]:Temperature is an important parameter in the study of physiology and pathology. The reaction process between most of the cells in cells, such as cell apoptosis, neural signal transmission, ion transport and so on, is affected by temperature. Compared to the traditional contact temperature sensors, such as thermocouples, mercury thermometers, and so on, the fluorescence temperature sensing is due to Non contact, fast response, high sensitivity, not easy to be affected by strong electromagnetic interference and the advantages of fast moving objects and small size objects, has attracted wide attention. And the proportional fluorescence temperature sensing based on double luminescent center will not be affected by the concentration of the probe, the inhomogeneity of the luminescent center, and the photoelectricity of the light source and detector. The influence of excursion and other external factors, with high sensitivity and accuracy, is a hot spot of research. In this paper, near infrared light is not affected by biological tissue autofluorescence interference, less damage to biological tissue, penetration depth and so on, using the advantages of strong design of metal organic frame materials and the introduction of near infrared luminescence characteristics. Rare earth ions, designed and synthesized three kinds of bimetallic mixed ligand rare earth organic frame materials, and carried out a proportional fluorescence temperature sensing study near the physiological temperature. The main contents and results are as follows: a series of rare earth organic frames are prepared by the coordination of near infrared luminescent rare earth ions Nd3+, Yb3+ and organic ligand H3BTC (benzol three carboxylic acid). LnBTC (Ln=Nd, Yb, NdxYbi-x). At room temperature, the near infrared fluorescence properties of LnBTC (Ln=Nd, Yb, NdxYbi-x) are studied. When the Nd3+ absorption peak 808 nm excite Nd0.054Yb0.946BTC, the material exhibits both Nd3+ and characteristic emission peaks at the same time. Under this wavelength, the temperature is studied at the temperature of 288~323. In the range of temperature changing fluorescence spectra, the results show that the luminescence intensity ratio of Nd3+ and Yb3+ (INd/IYb) has a good linear relationship with the temperature, and the relative sensitivity is 0.830 to 1.187% K-1, and the physiological temperature fluorescence sensing can be realized. A series of near infrared light luminescence is designed and synthesized with H2BDC-F4 (tetrafluoroethyl two methylene acid) as the ligand. Soil organic frame material LnBDC-F4 (Ln=Nd, Yb, NdxYbi-x). Due to the substitution of the C-F bond with the low phonon energy of the C-H bond in the ligand, the quenching of the near infrared light is effectively weakened, so that the ligand can light it through the "antenna effect" to the rare earth ion energy. Under the ligand absorption peak 303 nm, the emission spectra of LnBDC-F4 (Ln=Nd, Yb, NdxYbi-x) The characteristic emission peaks of the corresponding rare earth ions are all of them, and the ratio of the characteristic luminescence intensity of Nd3+ and Yb3+ in Nd0.711Yb0.289BDC-F4 (INd/1Yb) has a good linear relationship with the temperature in the low temperature region of 60~280 K. It can be applied to the temperature sensing of low temperature fluorescence. In addition, the nanometer size Nd0.577Yb0.423 under the near infrared light excitation of 808nm. The ratio of luminescence intensity of Nd3+ and yb3+ (INd/IYb) in BDC-F4 has a good linear relationship with the temperature in the temperature range of 293~313 K, and the relative sensitivity is 0.967-1.201% K-1, indicating that the material can be applied to physiological temperature fluorescence sensing. The near infrared luminescence temperature with high sensitivity is prepared with H3BTB (1,3,5- three (4- carboxy phenyl) benzene) as ligand. Degree sensing material Nd0.866Yb0.134BTB, the ratio of the characteristic luminescence intensity of Nd3+ and Yb3+ at 303~333 K temperature range (INd/lYb) has a good linear relationship with the temperature, and the relative sensitivity is 2.090 to 4.755% K-1, far higher than that of Nd0.054Yb0.946BTC and Nd0.577Yb0.423BDC-F4., and the material is both in water and in the physiological buffer solution. It is stable and has little biological toxicity, which indicates that the material has great application prospects in cell temperature sensing.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:O627;TQ422
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李善有,張義;管式爐連續(xù)加熱的溫度測量方法[J];機械工人(熱加工);1990年04期
2 楊世校;廖德慶;尤亞平;;裂解爐輻射爐管溫度測量方法的改進[J];石油化工設(shè)備技術(shù);1992年01期
3 ;高溫氣體的溫度測量方法[J];化工自動化及儀表;1974年01期
4 ;磨削區(qū)溫度測量方法的研究[J];上海紡織工學(xué)院學(xué)報;1979年04期
5 柳鴻星;馬明恕;;平爐爐頂溫度測量方法的改進[J];鋼鐵;1965年06期
6 胡和明;;氣化爐溫度測量方法的改進[J];化工自動化及儀表;1983年06期
7 張衛(wèi)華;冰銅溫度測量方法研究[J];江西銅業(yè)工程;1999年04期
8 劉文凱;張立武;;薄壁圓筒件車削溫度測量方法研究[J];機械設(shè)計與制造;2008年08期
9 樸大植;實用顏色溫度測量方法的研究[J];現(xiàn)代計量測試;1999年01期
10 高小兵,,王麗,張佳心;火焰電子溫度測量方法的改進[J];燃燒科學(xué)與技術(shù);1995年03期
相關(guān)會議論文 前1條
1 楊國騰;于艷華;杜永強;;聚合物基復(fù)合材料玻璃化轉(zhuǎn)變溫度測量方法的研究[A];面向航空試驗測試技術(shù)——2013年航空試驗測試技術(shù)峰會暨學(xué)術(shù)交流會論文集[C];2013年
相關(guān)碩士學(xué)位論文 前10條
1 練秀生;近紅外發(fā)光雙稀土—有機框架材料的設(shè)計合成及其熒光溫度傳感[D];浙江大學(xué);2016年
2 李鵬;基于吸收光譜氣體溫度測量方法的研究[D];燕山大學(xué);2009年
3 張桂敏;易燃易爆環(huán)境中的溫度測量技術(shù)研究[D];長春理工大學(xué);2014年
4 蒙建平;瞬態(tài)熱輻射譜的時間分辨測量及其溫度解析方法與技術(shù)研究[D];四川大學(xué);2001年
5 李松林;非接觸人體表面溫度測量方法的研究[D];天津大學(xué);2005年
6 張維克;爆炸場溫度的多譜線測試方法研究[D];南京理工大學(xué);2009年
7 萬相奎;虛擬式多通道溫度測試儀的設(shè)計與研發(fā)[D];重慶大學(xué);2002年
8 張洪林;金剛石對頂砧原位溫度測量方法的實驗研究[D];吉林大學(xué);2008年
9 方榮瑞;PCR儀溫度檢測及校準(zhǔn)規(guī)范研究[D];中國計量學(xué)院;2012年
10 林立軍;基于超聲技術(shù)的氣體溫度測量方法的研究[D];燕山大學(xué);2004年
本文編號:2146252
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2146252.html