鹵氧化鉍基光催化劑的制備及性能研究
本文選題:BiOX + 光催化 ; 參考:《聊城大學(xué)》2017年碩士論文
【摘要】:目前,隨著環(huán)境污染和能源短缺的日益嚴(yán)重,環(huán)境污染治理和新能源技術(shù)已經(jīng)成為國(guó)內(nèi)外科研工作者高度關(guān)注的研究方向。半導(dǎo)體光催化技術(shù)在太陽能轉(zhuǎn)換、污水和空氣污染治理領(lǐng)域表現(xiàn)出巨大應(yīng)用潛力,而受到廣泛關(guān)注。傳統(tǒng)的半導(dǎo)體光催化劑,例如TiO2和ZnO等,具有原料來源豐富,合成成本較低,無毒和化學(xué)穩(wěn)定性強(qiáng)等優(yōu)點(diǎn),在過去的四十多年得到了廣泛關(guān)注和深入研究。但是,研究發(fā)現(xiàn)這些傳統(tǒng)的半導(dǎo)體材料由于禁帶寬度大的原因,只能響應(yīng)占太陽光能量比例較少的紫外光,導(dǎo)致光催化材料對(duì)太陽光的利用率低;同時(shí),由于光生電子和空穴不能得到有效分離,光催化材料對(duì)光子的轉(zhuǎn)換效率低,也嚴(yán)重限制了其光催化活性的提高。為了解決上述問題國(guó)內(nèi)外學(xué)者一直在努力開發(fā)和探索具有可見光活性的新型光催化材料。鹵氧化鉍是典型的P型半導(dǎo)體,具有獨(dú)特的電子結(jié)構(gòu),使得其具有良好的光學(xué)和電學(xué)性能;另外,鹵氧化鉍具有特殊的層狀結(jié)構(gòu),層與層之間形成的內(nèi)電場(chǎng)有助于電子的轉(zhuǎn)移。因此,該材料在光催化方面具有很大應(yīng)用潛力。目前鹵氧化鉍材料的制備方法主要有水解法、溶劑熱法和水熱法等,但是制備過程復(fù)雜,條件要求苛刻。另外,鹵氧化鉍光催化材料的量子效率低也嚴(yán)重影響了其光催化活性,還具有較低的太陽光利用率等缺點(diǎn)。為克服上述缺陷并進(jìn)一步提高其光催化性能,本學(xué)位論文分別采用燃燒法和酸腐蝕法制備了一系列高活性的BiOX/半導(dǎo)體復(fù)合光催化材料。具體研究工作如下:(1)采用燃燒法制備了可磁性分離的NiFe_2O_4/BiOBr復(fù)合光催化材料。NiFe_2O_4/BiOBr異質(zhì)結(jié)構(gòu)可以導(dǎo)致光生電子和空穴在空間上的有效分離,大幅提高了材料的光催化活性;另外,借助于NiFe_2O_4的順磁性,該復(fù)合材料可以在外磁場(chǎng)作用下,實(shí)現(xiàn)方便快捷的磁性回收。(2)采用一步燃燒法制備了BiVO_4/BiOCl復(fù)合光催化材料。借助于BiVO_4材料的敏化作用,BiVO_4/BiOCl復(fù)合材料比單體BiOCl對(duì)可見光的吸收能力更大,可以更加高效的利用太陽光;另外,通過構(gòu)建BiVO_4和BiOCl異質(zhì)結(jié)構(gòu),促進(jìn)了光生電子和空穴的有效分離,提高了對(duì)RhB的降解活性。(3)采用酸腐蝕法成功制備了BiOBr/Bi_2Sn_2O_7異質(zhì)結(jié)光催化材料。在酸腐蝕過程中成功構(gòu)建BiOBr/Bi_2Sn_2O_7異質(zhì)結(jié);通過調(diào)整HBr的濃度,可有效調(diào)控微球狀Bi_2Sn_2O_7在片狀BiOBr的分布量。該復(fù)合材料中,兩相界面連接緊密,有利于電荷的快速傳輸,效抑制了光致電荷的復(fù)合,最終大幅提高了材料的光催化性能。(4)采用酸腐蝕法制備了BiOCl/Bi_2Sn_2O_7異質(zhì)結(jié)光催化材料。通過HCl處理Bi_2Sn_2O_7,成功制備了BiOCl/Bi_2Sn_2O_7異質(zhì)結(jié)復(fù)合材料。Bi_2Sn_2O_7的敏化作用與特殊的形貌結(jié)構(gòu)協(xié)同作用,有效提高了太陽光利用率和光催化活性。
[Abstract]:At present, with the increasingly serious environmental pollution and energy shortage, environmental pollution control and new energy technology have become the research direction that researchers at home and abroad pay close attention to. Semiconductor photocatalytic technology has shown great application potential in solar energy conversion, sewage and air pollution treatment, and has attracted wide attention. Traditional semiconductor photocatalysts, such as TIO _ 2 and ZnO, have many advantages, such as abundant raw materials, low synthesis cost, non-toxic and strong chemical stability, and have been widely concerned and deeply studied in the past 40 years. However, the study found that these traditional semiconductor materials can only respond to ultraviolet light, which accounts for a small proportion of solar energy, because of the large band gap, which leads to the low utilization ratio of photocatalytic materials to solar light; at the same time, The photocatalytic efficiency of photocatalytic materials is low, which limits the improvement of photocatalytic activity because of the lack of effective separation of photogenerated electrons and holes. In order to solve these problems, scholars at home and abroad have been developing and exploring new photocatalytic materials with visible light activity. Bismuth halide is a typical P-type semiconductor with unique electronic structure, which makes it have good optical and electrical properties. In addition, bismuth halide has a special layered structure, and the internal electric field formed between layers is conducive to the transfer of electrons. Therefore, this material has great application potential in photocatalysis. At present, the preparation methods of bismuth halide mainly include hydrolysis method, solvothermal method and hydrothermal method, but the preparation process is complicated and the conditions are demanding. In addition, the low quantum efficiency of bismuth halide photocatalytic material also seriously affects its photocatalytic activity, and has some disadvantages such as low solar light utilization rate and so on. In order to overcome the above defects and further improve its photocatalytic performance, a series of highly active BiOX / semiconductor composite photocatalytic materials were prepared by combustion method and acid corrosion method respectively. The specific research works are as follows: (1) the magnetically separated NiFe2O4 / BiOBr composite photocatalytic material. NiFe2O4 / BiOBr heterostructure can lead to the effective separation of photogenerated electrons and holes in space, and greatly improve the photocatalytic activity of the materials. With the help of the paramagnetism of NiFe _ 2O _ 4, the composite can realize the quick and convenient magnetic recovery under the action of external magnetic field. (2) Bivos _ 4 / BiOCl composite photocatalytic material was prepared by one-step combustion method. With the help of the sensitization of BiVO4 materials, BiVO4 / BiOCl composite has greater absorbability to visible light than the monomer BiOCl, and can utilize solar light more efficiently. In addition, by constructing BiVO4 and BiOCl heterostructures, the effective separation of photogenerated electrons and holes is promoted. The degradation activity of RhB was improved. (3) BiOBr-Bi2Sn2O7 heterojunction photocatalytic materials were successfully prepared by acid etching. BiOBr-Bi2Sn2O7 heterojunction was successfully constructed during acid corrosion, and the distribution of Bi2Sn2O7 in flake BiOBr could be effectively regulated by adjusting the concentration of HBR. In this composite, the two-phase interface is closely connected, which is favorable to the fast charge transfer, and the photocatalytic properties of the composite are greatly improved. (4) BiOCl-Bi2Sn2O7 heterojunction photocatalytic materials are prepared by acid etching method. By treating Bi2Sn2O7 with HCl, BiOCl / Bi2Sn2O7 heterojunction composite, Bi2Sn2O7, has been successfully prepared. The sensitizing effect of BiOCl / Bi2Sn2O7 and the synergistic effect of special morphology and structure have effectively improved the solar light utilization rate and photocatalytic activity.
【學(xué)位授予單位】:聊城大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O643.36
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 徐順青;逯元堂;高軍;張箏;;環(huán)境污染治理投資發(fā)展路徑分析[J];生態(tài)經(jīng)濟(jì);2017年02期
2 周五七;;中國(guó)環(huán)境污染第三方治理形成邏輯與困境突破[J];現(xiàn)代經(jīng)濟(jì)探討;2017年01期
3 榮耀光;梅安意;劉林峰;李雄;韓宏偉;;全固態(tài)介觀太陽能電池:從染料敏化到鈣鈦礦[J];化學(xué)學(xué)報(bào);2015年03期
4 Liang Kong;Zheng Jiang;Henry H.-C.Lai;Tiancun Xiao;Peter P.Edwards;;Does noble metal modification improve the photocatalytic activity of BiOCl?[J];Progress in Natural Science:Materials International;2013年03期
5 毛亮;;我國(guó)發(fā)展太陽能光伏發(fā)電的必要性及技術(shù)分析[J];科技傳播;2011年20期
6 ;Photocatalytic properties of BiOX(X=Cl,Br,and I)[J];Rare Metals;2008年03期
7 李建海;太陽能的開發(fā)與我國(guó)的可持續(xù)發(fā)展[J];蘭州教育學(xué)院學(xué)報(bào);2003年03期
,本文編號(hào):2084853
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2084853.html