硫化銻微納米材料的合成及其性能研究
本文選題:Sb2S3 + 海膽結(jié)構(gòu)。 參考:《東北電力大學》2017年碩士論文
【摘要】:微納米結(jié)構(gòu)材料由于融合了微米材料和納米材料的特點,在光學、電學、聲學等諸多方面表現(xiàn)出獨特的性能。而帶隙窄,且能充分利用太陽光的硫化物半導(dǎo)體材料,在光催化領(lǐng)域受到了研究者的青睞。此外,石墨烯具有吸附能力強,具有大的比表面積,電子遷移率快等特點,可改善半導(dǎo)體光催化劑的光催化性。因此,制備具有協(xié)同效應(yīng)的石墨烯/硫化物復(fù)合微納米材料成為光催化材料領(lǐng)域的研究重點之一。本文的主要研究內(nèi)容如下所述:(1)采用濕化學法,以酒石酸銻鉀、硫代乙酰胺為原料,合成出由長約10μm,單根直徑約100 nm的納米棒組裝成的海膽結(jié)構(gòu)Sb2S3微納米材料。系統(tǒng)探索了反應(yīng)物摩爾比、反應(yīng)時間和反應(yīng)溫度對產(chǎn)物形貌的影響。結(jié)果表明當酒石酸銻鉀和硫代乙酰胺摩爾比為1:2,160℃油浴加熱5 h,可合成出均一海膽結(jié)構(gòu)的Sb2S3微納米材料。根據(jù)晶體分裂機制,詳細推測了海膽結(jié)構(gòu)Sb2S3微納米材料的生長機理,并對產(chǎn)物的光學性能進行了相關(guān)測試。(2)采用微波法,以酒石酸銻鉀、硫脲為原料,合成出一維的管狀Sb2S3微納米材料,長約20μm,孔徑約為2.5μm。系統(tǒng)探索了微波功率,反應(yīng)物摩爾比、反應(yīng)時間和反應(yīng)溫度對產(chǎn)物形貌的影響,結(jié)果表明當酒石酸銻鉀和硫脲摩爾比為1:6,180℃微波加熱3h,可制得均一形貌的管狀結(jié)構(gòu)Sb2S3微納米材料。初步推測了管狀結(jié)構(gòu)Sb2S3微納米材料的生長機理,并對其光學性能進行了測試。(3)采用改良的Hummers法制備了氧化石墨,并在濕化學法制備Sb2S3的基礎(chǔ)上加入氧化石墨,以硼氫化鈉(NaBH4)作還原劑進行化學還原,Sb2S3形成的同時氧化石墨也被還原成石墨烯(rGO)。X射線衍射分析確定材料的組成為斜方晶系Sb2S3與rGO。掃描電子顯微鏡顯示材料中Sb2S3保持了原有的海膽結(jié)構(gòu)形貌,同時石墨烯包裹在Sb2S3海膽結(jié)構(gòu)外,形成石墨烯/硫化物復(fù)合結(jié)構(gòu)。(4)以氙燈作為光源,亞甲基藍為目標降解物,分別考察了上述兩種結(jié)構(gòu)以及相應(yīng)的Sb2S3/石墨烯復(fù)合材料在可見光下的光催化活性。結(jié)果表明,采用海膽狀Sb2S3作為光催化劑,當投加量為0.03 g時,降解30 mg/L的MB,在130 min內(nèi)其降解率可達99.32%。管狀Sb2S3光催化劑投加量為0.05 g時,降解50 mg/L的MB,在130 min內(nèi)其降解率可達98.87%。此外,相比純Sb2S3微納米材料,在相同實驗條件下Sb2S3/石墨烯復(fù)合材料達到相同降解效果時,降解時間縮短了50 min,表明復(fù)合材料具有更高效的光催化降解能力。
[Abstract]:Because of the characteristics of micronanomaterials and nanomaterials, micronanomaterials exhibit unique properties in many aspects, such as optics, electricity, and acoustics, which have a narrow band gap and can make full use of solar light sulphide semiconductors, which have been favored by researchers in the field of photocatalysis. In addition, graphene has a strong adsorption capacity and has a large capacity. The specific surface area and fast electron mobility can improve the photocatalytic activity of semiconductor photocatalyst. Therefore, the preparation of graphene / sulfide composite micronanomaterials with synergistic effects has become one of the key topics in the field of photocatalytic materials. The main contents of this paper are as follows: (1) using wet chemical method, antimony potassium tartrate, sulfur The synthesis of Sb2S3 micro nanomaterials composed of a nanorod with a length of about 10 m and a single diameter of about 100 nm was synthesized from acetamide. The effect of the molar ratio of reactants, reaction time and reaction temperature on the morphology of the products was systematically explored. The results showed that the molar ratio of antimony potassium tartrate and thioacetamide was 5 h at 1:2160 C for oil bath. Sb2S3 micro nanomaterials with homogeneous sea urchin structure were synthesized. According to the mechanism of crystal splitting, the growth mechanism of Sb2S3 micro nanomaterials in sea urchin structure was speculated and the optical properties of the products were tested. (2) a one-dimensional tubular Sb2S3 micro nanomaterial was synthesized by microwave method, using potassium antimony potassium tartrate and thiourea as raw material, which was about 20 m long. The effect of microwave power, molar ratio of reactant, reaction time and reaction temperature on the morphology of the product was explored. The results showed that the tubular structure Sb2S3 micro nano material could be prepared by microwave heating 3H at the molar ratio of antimony potassium tartrate and thiourea at 1:6180 C, and the tubular structure Sb2S3 micro nanomaterials were preliminarily speculated. The growth mechanism was tested and its optical properties were tested. (3) graphite oxide was prepared by improved Hummers method, and graphite oxide was added to Sb2S3 by wet chemical method. Sodium borohydride (NaBH4) was used as reducing agent for chemical reduction. The formation of Sb2S3 was also reduced to graphene (rGO).X ray diffraction analysis. The composition of the material is the trapezoid Sb2S3 and the rGO. scanning electron microscope. Sb2S3 maintains the original structure of the sea urchin, and the graphene is wrapped in the structure of the Sb2S3 sea urchin to form a composite structure of graphene / sulfide. (4) the xenon lamp is used as the light source and Ya Jiaji blue is the target degrading object, and the above two structures are investigated respectively. As well as the photocatalytic activity of the corresponding Sb2S3/ graphene composite under visible light, the results show that the degradation rate of 50 mg/L in the 130 min is degraded by the degradation rate of 30 mg/L MB when the dosage is 0.03 g, and the degradation rate of the 99.32%. tubular Sb2S3 photocatalyst is up to 0.05 g in 130 min. Up to 98.87%., compared with pure Sb2S3 micro nano materials, the degradation time of Sb2S3/ graphene composite has been reduced by 50 min under the same experimental conditions, which indicates that the composite has more efficient photocatalytic degradation ability.
【學位授予單位】:東北電力大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O614.531;TB383.1
【參考文獻】
相關(guān)期刊論文 前10條
1 管曉梅;李國軍;黎春陽;任瑞銘;;噴霧干燥法合成納微多孔球形LiFePO_4/C鋰離子電池正極材料(英文)[J];Transactions of Nonferrous Metals Society of China;2017年01期
2 劉峰;逯亞飛;葉明富;許立信;孔祥榮;萬梅秀;諸榮孫;;硫化銻納米材料制備研究進展[J];上海化工;2014年11期
3 吳松;楊?;袁新松;王百年;;Sb_2S_3納米棒束的回流法合成與表征[J];稀有金屬與硬質(zhì)合金;2013年03期
4 丁翔;董芳;;Sb_2S_3納米線合成和表征[J];陜西科技大學學報(自然科學版);2012年05期
5 葉明富;孔祥榮;潘正凱;伊廷鋒;諸榮孫;任世彪;雷智平;;微波法合成樹枝狀納米硫化銻[J];安徽工業(yè)大學學報(自然科學版);2012年04期
6 汪程鵬;李付國;陸紅亞;王磊;喬慧娟;;劇烈塑性變形制備微納米材料的變形細化機理[J];金屬熱處理;2012年02期
7 ;Shape evolution of antimony oxychloride from sheaf-like to quasi-wafer structures[J];Chinese Science Bulletin;2011年35期
8 陳廣義;張萬喜;魏志勇;梁繼才;趙劍;;硫化銻單晶納米帶的水熱制備、表征及性能研究[J];功能材料;2010年11期
9 雍高兵;朱啟安;項尚;陳利霞;譚志剛;徐軍古;;回流法合成硫化銻納米棒及其光催化性能研究[J];化學學報;2010年21期
10 代淑芬;;納米材料的特性和發(fā)展[J];無錫南洋學院學報;2008年04期
相關(guān)碩士學位論文 前1條
1 譚香;硫化銻納米材料的制備及其可見光光催化性能研究[D];湘潭大學;2013年
,本文編號:2074794
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2074794.html