過(guò)渡金屬磷化物的可控制備及其電解水催化性能的研究
本文選題:水滑石前體 + 表面活性劑��; 參考:《北京化工大學(xué)》2017年碩士論文
【摘要】:現(xiàn)今社會(huì)經(jīng)濟(jì)高速發(fā)展,對(duì)于能源的需求量也越來(lái)越大,傳統(tǒng)化石能源已不能滿足日益增長(zhǎng)的社會(huì)需求,而且對(duì)環(huán)境會(huì)造成不可挽回的污染,因此尋找清潔、可持續(xù)發(fā)展的綠色新能源成為大家共同關(guān)注的焦點(diǎn)問(wèn)題。氫能由于其來(lái)源廣泛、可再生、清潔無(wú)污染、能量密度高、轉(zhuǎn)換效率高,而且易儲(chǔ)存等諸多優(yōu)點(diǎn)而備受研究者的重視。目前應(yīng)用最為廣泛的制氫技術(shù)為電解水制氫。而影響電解水制氫效率的關(guān)鍵則在于電極催化劑材料的合理選用。目前商業(yè)化應(yīng)用最為廣泛的電解水電極催化劑材料分別為:應(yīng)用于堿性條件下析氧反應(yīng)的IrO2、Ru02等貴金屬氧化物;應(yīng)用于酸性條件下析氫反應(yīng)Pt/C等材料。但是由于貴金屬催化劑價(jià)格昂貴、來(lái)源匱乏、而且循環(huán)穩(wěn)定性較差,因此尋找來(lái)源豐富、價(jià)格低廉的非貴金屬電極催化劑來(lái)替代貴金屬催化劑的使用變得尤為迫切。本文主要以類(lèi)水滑石材料為前驅(qū)體,利用后期磷化和插層等手段,成功制備出不同形貌的過(guò)渡金屬磷化物(花狀CoP/CoP2/A1203和豆莢狀Co2P/C),并進(jìn)一步研究了其作為電解水電極催化劑的性能。主要研究?jī)?nèi)容如下:1、采用傳統(tǒng)共沉淀方法合成花狀CoAl-LDH,隨后經(jīng)過(guò)還原、磷化等方法制得花狀CoP/CoP2/Al2O3復(fù)合催化劑材料。該復(fù)合物催化劑材料顆粒尺寸分布均一,同時(shí)花狀結(jié)構(gòu)又能夠保證活性位點(diǎn)的充分暴露,從而更近一步提高其催化活性。在1.0MKOH堿性電解質(zhì)溶液中進(jìn)行測(cè)試,結(jié)果顯示該催化劑材料作為OER電極材料時(shí),達(dá)到10 mA/cm2所需過(guò)電勢(shì)為300 mV,相應(yīng)的塔菲爾斜率僅為63 mV/dec,作為HER電極材時(shí),達(dá)到-10 mA/cm2所需過(guò)電勢(shì)為-138 mV,相應(yīng)的塔菲爾斜率僅為73 mV/dec,最后將該催化劑同時(shí)作為電解水的正負(fù)極進(jìn)行測(cè)試,發(fā)現(xiàn)達(dá)到10 mA/cm2所需電壓僅為1.65 V,并且在循環(huán)24小時(shí)之后電流密度并沒(méi)有明顯的下降。2、根據(jù)類(lèi)水滑石材料的獨(dú)特層狀結(jié)構(gòu),利用層間陰離子可調(diào)變的特性,設(shè)計(jì)通過(guò)使用陰離子型表面活性劑(SDP)插層Co(OH)2層狀材料作為前驅(qū)體,經(jīng)過(guò)后續(xù)程序升溫焙燒的方法制得豆莢狀Co2P/C復(fù)合物催化劑材料。并對(duì)其電催化性能進(jìn)行探究。該制備方法的優(yōu)勢(shì)在于通過(guò)簡(jiǎn)單的一步插層法同時(shí)引入碳源與磷源,既避免了有機(jī)磷源的使用,又同時(shí)能夠提高該催化劑材料的導(dǎo)電性,進(jìn)而更進(jìn)一步的提高其催化活性及其電化學(xué)穩(wěn)定性。在1.0 MKOH堿性電解質(zhì)溶液中進(jìn)行測(cè)試,結(jié)果顯示該催化劑材料作為OER電極材料時(shí),達(dá)到10mA/cm2所需過(guò)電勢(shì)為320 mV,相應(yīng)的塔菲爾斜率僅為70 mV/dec,作為HER電極材時(shí),達(dá)到-10 mA/cm2所需過(guò)電勢(shì)為-140 mV,相應(yīng)的塔菲爾斜率僅為63 mV/dec,最后將該催化劑同時(shí)作為電解水的正負(fù)極進(jìn)行測(cè)試,發(fā)現(xiàn)達(dá)到10 mA/cm2所需電壓僅為1.50 V,并且在循環(huán)24小時(shí)之后電流密度并沒(méi)有明顯的下降。
[Abstract]:Nowadays, with the rapid development of society and economy, the demand for energy is also increasing. The traditional fossil energy can not meet the increasing social demand, and it will cause irreparable pollution to the environment. Sustainable development of green new energy has become the focus of common concern. Hydrogen energy has attracted much attention due to its advantages such as wide source, renewable, clean and pollution-free, high energy density, high conversion efficiency, and easy storage. At present, the most widely used hydrogen production technology is electrolytic water hydrogen production. The key to the hydrogen production efficiency of electrolytic water is the reasonable selection of electrode catalyst materials. At present, the most widely used electrolytic water electrode catalyst materials are as follows: the noble metal oxides such as IrO2 / Ru02 used for oxygen evolution under alkaline conditions, and the materials such as PT / C for hydrogen evolution under acidic conditions. However, because the precious metal catalyst is expensive, the source is scarce, and the cycle stability is poor, it is urgent to find the cheap non-precious metal electrode catalyst to replace the precious metal catalyst. In this paper, hydrotalcite-like materials were used as precursors, and different morphologies of transition metal phosphates (flower-like CoP / CoP2A1203 and pod-like Co2P / C) were successfully prepared by means of late phosphating and intercalation, and their properties as electrolytic water electrode catalysts were further studied. The main contents of this study are as follows: 1. The flower-like CoAl-LDH was synthesized by the traditional coprecipitation method, and then the flower-like CoP / CoP2Al _ 2O _ 3 composite catalyst material was prepared by reduction, phosphating and other methods. The particle size distribution of the composite catalyst is uniform, and the flower-like structure can guarantee the full exposure of the active sites, so that the catalytic activity can be improved further. The test results in 1.0 MKOH alkaline electrolyte solution show that the overpotential of the catalyst is 300mV when it is used as the electrode material for 10 mA/cm2, and the corresponding Tafel slope is only 63mV / r, which is used as HER electrode material, and the results show that when the catalyst is used as the electrode material, the overpotential is 300mV and the corresponding Tafel slope is only 63mV / r. The overpotential needed to reach -10 mA/cm2 is -138 MV, and the corresponding Taffel slope is only 73 MV / r. Finally, the catalyst is used as the positive and negative electrode of electrolytic water. It is found that the voltage required to reach 10 mA/cm2 is only 1.65 V, and the current density does not decrease significantly after 24 hours of cycle. According to the unique layered structure of hydrotalcite-like materials, the interlayer anions can be adjusted. A pod-like Co _ 2P / C composite catalyst material was prepared by using the anion surfactant (SDP) intercalated Co (OH) _ 2 layered material as the precursor and the subsequent temperature-programmed roasting process. And its electrocatalytic performance was explored. The advantage of this method lies in the simple one-step intercalation method, which can not only avoid the use of organic phosphorus sources, but also improve the conductivity of the catalyst materials. Furthermore, its catalytic activity and electrochemical stability were further improved. The results of measurement in 1.0 MKOH alkaline electrolyte solution showed that the overpotential needed to reach 10mA/cm2 was 320 MV, and the corresponding Tafel slope was only 70 MV / dec.When the catalyst was used as the electrode material, the overpotential of the catalyst was 320 MV, and the corresponding Tafer slope was only 70 MV / deco. The overpotential needed to reach -10 mA/cm2 is -140 MV, and the corresponding Taffel slope is only 63 MV / r. Finally, the catalyst is used as the positive and negative electrode of electrolytic water. It is found that the voltage required to reach 10 mA/cm2 is only 1.50 V, and the current density does not decrease significantly after 24 hours of cycle.
【學(xué)位授予單位】:北京化工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O643.36;TQ116.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄒向榮,翁端;汽車(chē)尾氣凈化催化劑研究進(jìn)展——催化劑材料與性能[J];材料導(dǎo)報(bào);1997年04期
2 陳勝洲,董新法,林維明;直接甲醇燃料電池陽(yáng)極電催化劑材料的研究[J];化工新型材料;2002年10期
3 覃立浚;蔡火操;;用電解水份儀測(cè)定氧中微量水[J];化工自動(dòng)化及儀表;1989年02期
4 古仁欽,李琦;電解水中電極材料與電解條件的選擇[J];化學(xué)教育;1998年06期
5 危永波;電解水作為剛采摘蔬菜消毒劑的研究[J];食品與機(jī)械;2000年01期
6 錢(qián)蓓蕾;黃萱運(yùn);惠蕓華;沈曉盛;;氧化電解水在食品工業(yè)中的消毒研究進(jìn)展[J];漁業(yè)信息與戰(zhàn)略;2012年01期
7 孫錦宜;催化劑材料的研究動(dòng)向[J];化學(xué)工業(yè)與工程技術(shù);1996年01期
8 許鵬;;電解水機(jī)購(gòu)買(mǎi)指南[J];現(xiàn)代家電;2011年11期
9 謝軍;孫曉紅;潘迎捷;趙勇;;電解水和有機(jī)酸對(duì)蝦的殺菌效果及感官品質(zhì)影響[J];食品與發(fā)酵工業(yè);2010年05期
10 ;變交流電為直流電解lz了“電解水”實(shí)驗(yàn)的困難[J];化學(xué)通報(bào);1954年11期
相關(guān)會(huì)議論文 前10條
1 沈曉盛;唐鳥(niǎo)林;于慧娟;劉承初;;氧化電解水在食品業(yè)中的消毒研究進(jìn)展[A];2009年中國(guó)水產(chǎn)學(xué)會(huì)學(xué)術(shù)年會(huì)論文摘要集[C];2009年
2 李越湘;;可見(jiàn)光制氫催化劑材料的研究[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第3分冊(cè))[C];2010年
3 趙勇;謝軍;潘迎捷;;電解水消毒殺菌新技術(shù)在保障海洋食品安全中的應(yīng)用[A];中國(guó)食品科學(xué)技術(shù)學(xué)會(huì)第八屆年會(huì)暨第六屆東西方食品業(yè)高層論壇論文摘要集[C];2011年
4 鄭燕英;竇濤;段愛(ài)軍;趙震;康善嬌;李強(qiáng);;一種新穎的原位方法制備MoSiOx介孔復(fù)合氧化物[A];第四屆全國(guó)環(huán)境催化與環(huán)境材料學(xué)術(shù)會(huì)議論文集[C];2005年
5 吳浪;張永春;李哲民;費(fèi)小猛;宋偉杰;;過(guò)渡金屬改性活性炭脫硫化氫性能的研究[A];中國(guó)化工學(xué)會(huì)2005年石油化工學(xué)術(shù)年會(huì)論文集[C];2005年
6 張朝霞;余旭峰;郭靜茹;陳e,
本文編號(hào):2066283
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2066283.html