天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 化學(xué)論文 >

幾類有機(jī)環(huán)化反應(yīng)的密度泛函理論研究

發(fā)布時(shí)間:2018-06-23 06:23

  本文選題:密度泛函理論 + 過(guò)渡金屬; 參考:《云南師范大學(xué)》2017年碩士論文


【摘要】:由于過(guò)渡金屬最外層具有未被電子填滿的d軌道,因而它們常常呈現(xiàn)出不同的氧化態(tài),且對(duì)不飽和化合物具有較強(qiáng)的親和力。過(guò)渡金屬可通過(guò)配位作用與很多化合物以σ-鍵或π-鍵形式構(gòu)成配位體,從而達(dá)到穩(wěn)定狀態(tài)。反應(yīng)過(guò)程中,過(guò)渡金屬既可向反應(yīng)底物提供電子,又可從反應(yīng)底物中奪取電子,并通過(guò)改變自身氧化態(tài)及配位數(shù)來(lái)促進(jìn)整個(gè)反應(yīng)的進(jìn)行。這種催化方式常被用于構(gòu)建復(fù)雜的雜環(huán)分子,因而,過(guò)渡金屬催化劑在有機(jī)合成領(lǐng)域一直扮演著很重要的角色。本論文中,我們針對(duì)金屬鎳、金屬銀和金屬鈀催化環(huán)化反應(yīng)的三個(gè)體系展開了理論研究,采用密度泛函理論(DFT)對(duì)反應(yīng)的可能機(jī)理進(jìn)行了計(jì)算,對(duì)反應(yīng)中涉及的所有反應(yīng)物、產(chǎn)物、過(guò)渡態(tài)和中間體等在IDSCRF-B3LYP/DGDZVP計(jì)算水平上進(jìn)行了全幾何構(gòu)型優(yōu)化,并進(jìn)行了頻率計(jì)算。本論文中使用的能量值均是在實(shí)驗(yàn)溶劑中,矯正到相應(yīng)的實(shí)驗(yàn)溫度下的吉布斯自由能值。1.在金屬鎳催化乙烯基環(huán)丙烷和亞胺的[3+2]環(huán)加成反應(yīng)體系中,在乙烯基環(huán)丙烷的開環(huán)過(guò)程中我們找到五條可能的反應(yīng)路徑,通過(guò)計(jì)算我們發(fā)現(xiàn)鎳催化劑配位在乙烯基下方并誘導(dǎo)環(huán)丙烷開環(huán)的路徑(Path I)是能量?jī)?yōu)勢(shì)路徑。而在后續(xù)的[3+2]環(huán)加成的過(guò)程中,反應(yīng)分步進(jìn)行,首先亞胺與開環(huán)后的乙烯基環(huán)丙烷形成C-C鍵,之后形成C-N鍵得到吡咯環(huán),其中形成C-C鍵的步驟是整個(gè)反應(yīng)的決速步。由于亞胺上的苯環(huán)空間取向不同,在環(huán)加成的過(guò)程中存在形成順式(Cis)和反式(Trans)產(chǎn)物兩種不同的反應(yīng)路徑,其中對(duì)應(yīng)形成反式產(chǎn)物的決速步過(guò)渡態(tài)的能壘為26.9 kcal/mol,比形成順式產(chǎn)物的決速步過(guò)渡態(tài)的能壘(25.2kcal/mol)高出1.7 kcal/mol,基本能解釋主要形成順式產(chǎn)物的實(shí)驗(yàn)事實(shí)。電子密度拓?fù)浞治鼋Y(jié)果表明:對(duì)應(yīng)形成順式產(chǎn)物的決速步過(guò)渡態(tài)的空間位阻較小,因而更加穩(wěn)定。將dmpe配體換成PMe2Ph并對(duì)相應(yīng)的優(yōu)勢(shì)路徑Path Ia進(jìn)行計(jì)算發(fā)現(xiàn),使用PMe2Ph配體時(shí)反應(yīng)的立體選擇性不及使用dmpe配體明顯,并且在[3+2]環(huán)化中形成C-N鍵所需的能量也比使用dmpe配體高,說(shuō)明換用PMe2Ph配體后反應(yīng)性和反應(yīng)的立體選擇性都有所下降,與實(shí)驗(yàn)結(jié)果較好吻合。最后,我們對(duì)比了三種計(jì)算水平(IDSCRF-B3LYP/DGDZVP、IDSCRF-M062X/DGDZVP、IDSCRFB3LYP+D3/DGDZVP)對(duì)優(yōu)勢(shì)路徑的計(jì)算結(jié)果,發(fā)現(xiàn)IDSCRF-B3LYP/DGDZVP計(jì)算水平上得到的計(jì)算結(jié)果最貼近實(shí)驗(yàn)事實(shí)。2.在金屬銀催化α-氨基磷酸鹽和烯烴的[3+2]環(huán)加成反應(yīng)體系中,我們通過(guò)優(yōu)化找到了該反應(yīng)的可能機(jī)理。第一步是質(zhì)子遷移的過(guò)程,Ag(OTf)經(jīng)過(guò)配體交換過(guò)程與二茂鐵類配體形成催化劑,并幫助α-氨基磷酸鹽遷氫,同時(shí)形成的H-HMDS從反應(yīng)中脫落。第二步是[3+2]環(huán)加成的過(guò)程,由于烯烴上的乙酸酯基的空間取向不同,在環(huán)加成的過(guò)程中存在形成內(nèi)式(Endo)和外式(Exo)產(chǎn)物兩條不同的反應(yīng)路徑,其中形成內(nèi)式產(chǎn)物的路徑是一個(gè)分步成環(huán)的過(guò)程,而形成外式產(chǎn)物的路徑則表現(xiàn)為協(xié)同成環(huán)。計(jì)算結(jié)果顯示:形成內(nèi)式產(chǎn)物的路徑對(duì)應(yīng)的過(guò)渡態(tài)能壘比相應(yīng)的外式過(guò)渡態(tài)的能壘高出2.2 kcal/mol,即形成內(nèi)式產(chǎn)物的路徑在能量上占優(yōu)勢(shì),其根本原因是烯烴上的乙酸酯基與金屬銀的配位作用能夠穩(wěn)定內(nèi)式過(guò)渡態(tài)的構(gòu)型,而在外式過(guò)渡態(tài)中不存在該配位作用。第三步是氫原子從H-HMDS上遷移回反應(yīng)物、同時(shí)再生催化劑的過(guò)程。該步為整個(gè)反應(yīng)的決速步,相應(yīng)的外式過(guò)渡態(tài)和內(nèi)式過(guò)渡態(tài)的能壘分別為25.4和21.5 kcal/mol,外式比內(nèi)式高出3.9 kcal/mol,能夠較好解釋內(nèi)式產(chǎn)物為優(yōu)勢(shì)產(chǎn)物。另外,我們還通過(guò)對(duì)銅(I)催化甲亞胺葉立德與丙烯酸酯的[3+2]環(huán)加成反應(yīng)的關(guān)鍵過(guò)程進(jìn)行計(jì)算,發(fā)現(xiàn)由于配體與丙烯酸酯之間位阻較大,內(nèi)式過(guò)渡態(tài)中C=O基團(tuán)與金屬銅之間不能形成配位鍵,從而導(dǎo)致外式產(chǎn)物成為優(yōu)勢(shì)產(chǎn)物,與相應(yīng)的實(shí)驗(yàn)事實(shí)基本吻合。3.在金屬鈀催化環(huán)丁酮衍生物與炔烴的偶聯(lián)環(huán)化反應(yīng)體系中,我們通過(guò)優(yōu)化找到了反應(yīng)的可能機(jī)理。首先是2-(2-溴苯亞甲基)環(huán)丁酮上的溴原子遷移到鈀上的過(guò)程,其次是取代環(huán)丁酮與第二個(gè)反應(yīng)物2-炔基苯酚偶聯(lián)、生成C-C鍵的過(guò)程。之后由于六元環(huán)成環(huán)和環(huán)丁酮開環(huán)順序的不同,存在Path A(六元環(huán)優(yōu)先成環(huán)后環(huán)丁酮再開環(huán))和Path C(環(huán)丁酮開環(huán)后六元環(huán)再成環(huán))兩條可能的反應(yīng)路徑,其中Path A為能量?jī)?yōu)勢(shì)路徑,其決速步對(duì)應(yīng)六元環(huán)成環(huán)形成螺環(huán)中間體的過(guò)程,能壘為33.0 kcal/mol。對(duì)Path A和Path C兩條路徑上關(guān)鍵駐點(diǎn)的幾何構(gòu)型參數(shù)和成鍵性質(zhì)的分析結(jié)果同樣印證了優(yōu)先形成六元環(huán)的路徑(Path A)比優(yōu)先打開環(huán)丁酮的路徑(Path C)更加容易。
[Abstract]:As the outer layer of the transition metal has an unfilled D orbit, they often exhibit different oxidation states and have a strong affinity for unsaturated compounds. Transition metals can form coordination bodies with many compounds in the form of sigma bonds or pion bonds, thus achieving a stable state. During the reaction process, transition gold. Genera can not only provide electrons to the reaction substrates, but also take electrons from the reaction substrates and promote the whole reaction by changing their own oxidation states and coordination numbers. This catalysis is often used in the construction of complex heterocyclic molecules. Therefore, the transition metal catalysts have been playing an important role in the field of organic synthesis. We have carried out a theoretical study of three systems for the catalytic cyclization of metal nickel, metal silver and metal palladium. The possible mechanism of the reaction was calculated by the density functional theory (DFT). All the reactants, products, transition states and intermediates involved in the reaction were fully geometrically constructed at the IDSCRF-B3LYP/DGDZVP Computing Level. The energy values used in this paper are all in the experimental solvent, and the Gibbs free energy value.1. is corrected to the corresponding experimental temperature. In the [3+2] ring addition reaction system of nickel catalyzed vinyl cyclopropane and imide, we found five possible reactions in the opening process of vinyl cyclopropane. According to the path, we find that the path of the nickel catalyst coordination position under the vinyl group and induced cyclopropane opening ring (Path I) is the energy dominant path. In the subsequent [3+2] ring addition process, the reaction is carried out step by step. First, the imide and the open ring vinyl cyclopropane form the C-C bond, and then form the C-N bond to get the pyrrole ring, which forms the C. The step of the -C bond is the quick step of the whole reaction. Due to the different spatial orientation of the benzene ring on the imide, there are two different reaction paths to form the CIS (Cis) and the trans (Trans) products in the process of the cycloaddition, in which the energy barrier of the fast step transition state corresponding to the formation of the trans product is 26.9 kcal/mol, which is faster than the quick step of forming the CIS product. The state energy barrier (25.2kcal/mol) is 1.7 kcal/mol high, which can basically explain the experimental fact that mainly forms the CIS product. The electronic density topology analysis shows that the spatial resistance of the fast step transition state corresponding to the formation of the CIS product is smaller and thus more stable. The DMPE ligand is changed to PMe2Ph and the corresponding dominant path Path Ia is calculated. Now, the stereoselectivity of the reaction with PMe2Ph ligands is less obvious than the use of the DMPE ligand, and the energy required to form a C-N bond in the [3+2] cyclization is also higher than the use of the DMPE ligand. It shows that the stereoselectivity of the reactivity and reaction of the PMe2Ph ligand is decreased and the experimental results are better anastomosed. Finally, we compared three kinds of calculation water. The calculation results of IDSCRF-B3LYP/DGDZVP, IDSCRF-M062X/DGDZVP, IDSCRFB3LYP+D3/DGDZVP on the dominant path have been found. It is found that the results obtained at the IDSCRF-B3LYP/DGDZVP computing level are closest to the experimental fact that.2. is in the [3+2] ring addition reaction system of metallic silver catalyzed alpha aminophosphate and olefin, and we found the reaction by optimization. The first step is the process of proton transfer. Ag (OTf) forms a catalyst with two ferrocene ligands through the ligand exchange process, and helps the alpha aminophosphate to be removed from the reaction. The second step is the process of addition of the [3+2] ring, and the process of the cycloaddition of the alkyl group on the olefin is in the process of addition. There are two different reaction paths for the formation of internal (Endo) and external (Exo) products, in which the path of the internal product is a step forming the ring, while the path of the formation of the external product is a cooperative ring. The results show that the transition state energy barrier of the path corresponding to the internal product is more than the corresponding transition state. The base of the barrier is 2.2 kcal/mol, that is, the path of forming the internal product is dominated by the energy. The fundamental reason is that the coordination of the alkenes on the alkene and the metal silver can stabilize the internal transition state, but there is no coordination in the external transition state. The third step is to migrate the reactant from the H-HMDS and regenerate the catalyst. This step is the quick step of the whole reaction, the corresponding transition state and the internal transition state are 25.4 and 21.5 kcal/mol respectively, and the external internal formula is 3.9 kcal/mol higher, which can better explain the internal product as the dominant product. In addition, we also add the [3+2] ring of copper (I) to the methimide leaves and the [3+2] ring of the acrylate. The critical process is calculated. It is found that the coordination between the C=O group and metal copper in the inner transition state can not form a coordination bond in the internal transition state, which leads to the external product becoming the dominant product. The coupling cyclization reaction of.3. in metal palladium catalyzed ring butanone derivatives and alkynes is basically consistent with the corresponding experimental facts. In the system, we find the possible mechanism by optimizing the reaction. First, the process of migration of bromine atoms on 2- (2- bromine Ya Jiaji) ring butanone to palladium, followed by the coupling of cyclic butanone with second reactants, 2- alkynyl phenol, and the process of generating C-C bonds. After that, there is a Path A due to the difference in the ring opening sequence of the six membered ring and the ring butanone. Two possible reaction paths (six membered ring precedence ring to ring butanone ring) and Path C (ring ring reformed ring after ring opening ring), in which Path A is an energy dominant path, and its speed step corresponds to a six membered ring forming a spiral intermediate process and can be built into a geometric structure of the key point on the Path A and Path C two paths by 33 kcal/mol.. The analysis results of type parameters and bonding properties also confirm that the path of preferential formation of six membered rings (Path A) is easier than that of the route of Path (C).
【學(xué)位授予單位】:云南師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O621.256.9

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 鄭大貴,,李玉良,朱道本;C_(60)的[3+2]環(huán)加成反應(yīng)[J];化學(xué)通報(bào);1996年11期

2 曾中一;楊定喬;;鎳催化環(huán)加成反應(yīng)的研究進(jìn)展[J];有機(jī)化學(xué);2013年10期

3 劉福勝,楊錦宗;8-乙烯基嘌呤上的親核加成和環(huán)加成反應(yīng)[J];有機(jī)化學(xué);2000年02期

4 歐立公,白東魯;[4+3]環(huán)加成反應(yīng)研究進(jìn)展[J];化學(xué)進(jìn)展;2000年01期

5 夏樹偉,尚貞鋒,陳蘭,潘蔭明,趙學(xué)莊,唐敖慶;C_(60)與硅烯環(huán)加成反應(yīng)機(jī)理的理論研究[J];高等學(xué)校化學(xué)學(xué)報(bào);2001年02期

6 孫成科,林雪飛;8-二甲基-7-甲氧基-5-烯-壬腈氧化物環(huán)加成反應(yīng)機(jī)理[J];分子科學(xué)學(xué)報(bào);2002年01期

7 宋琦;三組分環(huán)加成反應(yīng)[J];大學(xué)化學(xué);2003年04期

8 尚貞鋒;樊玲;李瑞芳;許秀芳;;C_(82)與甲亞胺1,3-偶極環(huán)加成反應(yīng)的理論研究[J];化學(xué)學(xué)報(bào);2007年03期

9 羅人仕;楊定喬;;銠催化環(huán)加成反應(yīng)的研究進(jìn)展[J];有機(jī)化學(xué);2007年08期

10 李欣;林智杰;胡泓梵;張洪奎;;(3S,4R)-3,4-(二氧丙叉基)-N-氧化吡咯烷與丙烯酸甲酯的環(huán)加成反應(yīng)研究[J];廈門大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年01期

相關(guān)會(huì)議論文 前10條

1 王磊;張艷;徐建華;;鄰醌與VA唑的光化[4+4]環(huán)加成反應(yīng)[A];第三屆全國(guó)有機(jī)化學(xué)學(xué)術(shù)會(huì)議論文集(上冊(cè))[C];2004年

2 周友運(yùn);孫秀麗;唐勇;;1,1-偕二酯基環(huán)丙烷與azomethine imines的不對(duì)稱環(huán)加成反應(yīng)研究[A];第十六屆全國(guó)金屬有機(jī)化學(xué)學(xué)術(shù)討論會(huì)論文集[C];2010年

3 劉艷玲;戴柏青;;硼氮納米管1,3-偶極環(huán)加成反應(yīng)的理論研究[A];中國(guó)化學(xué)會(huì)第九屆全國(guó)量子化學(xué)學(xué)術(shù)會(huì)議暨慶祝徐光憲教授從教六十年論文摘要集[C];2005年

4 李小六;邢春勇;李志偉;陳華;;利用1,3-偶極環(huán)加成反應(yīng)合成芳烷基C-氨基糖苷衍生物[A];中國(guó)化學(xué)會(huì)第四屆有機(jī)化學(xué)學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];2005年

5 張俊良;;金催化的環(huán)化與環(huán)加成反應(yīng)研究[A];中國(guó)化學(xué)會(huì)第七屆有機(jī)化學(xué)學(xué)術(shù)會(huì)議圖文摘要集[C];2011年

6 王鵬飛;高鵬;許鵬飛;;基于天然樟腦的手性硝酮的1,3-偶極環(huán)加成反應(yīng)研究[A];中國(guó)化學(xué)會(huì)第四屆有機(jī)化學(xué)學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];2005年

7 馬玉國(guó);陳昊;;晶體中壓力促進(jìn)的疊氮和炔的環(huán)加成反應(yīng)[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第15分會(huì)場(chǎng)摘要集[C];2012年

8 劉全忠;劉澤水;李文科;何龍;康泰然;;乙烯基環(huán)丙烷與原位產(chǎn)生的a,β-不飽和亞胺的環(huán)加成反應(yīng)[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第07分會(huì):有機(jī)化學(xué)[C];2014年

9 許海;田雷蕾;李團(tuán)委;楊兵;馬於光;;基于分子內(nèi)旋轉(zhuǎn)誘導(dǎo)的[2+2]環(huán)加成反應(yīng)機(jī)理的密度泛函研究[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第15分會(huì)場(chǎng)摘要集[C];2010年

10 王杞生;叢航;張建新;陶朱;薛賽鳳;;七元瓜環(huán)對(duì)光致環(huán)加成反應(yīng)的立體選擇性[A];大環(huán)化學(xué)和超分子化學(xué)的新發(fā)展——當(dāng)前學(xué)科交叉的一個(gè)重要橋梁——中國(guó)化學(xué)會(huì)全國(guó)第十五屆大環(huán)化學(xué)暨第七屆超分子化學(xué)學(xué)術(shù)討論會(huì)論文摘要集[C];2010年

相關(guān)重要報(bào)紙文章 前1條

1 記者 常麗君;新方法能加速尋找新材料[N];科技日?qǐng)?bào);2014年

相關(guān)博士學(xué)位論文 前10條

1 丁潤(rùn)波;基于炔酰胺的方法學(xué)研究及Cephalotaxine前體的合成研究[D];蘭州大學(xué);2015年

2 張文靜;NHC催化烯酮環(huán)加成反應(yīng)機(jī)理與3d過(guò)渡金屬化合物鍵能的密度泛函研究[D];鄭州大學(xué);2014年

3 孟凡星;雙咪唑化合物的共晶生長(zhǎng)和固態(tài)光環(huán)加成反應(yīng)[D];吉林大學(xué);2016年

4 黃曉程;芳炔環(huán)加成反應(yīng)及鹵鈀化環(huán)化反應(yīng)的研究[D];湖南師范大學(xué);2012年

5 蘭東輝;二氧化碳資源化為環(huán)狀碳酸酯的新型碳基催化劑研究[D];湖南大學(xué);2016年

6 王西照;新型β-內(nèi)酰胺和甘草次酸雜環(huán)衍生物的研究及其核心偶極環(huán)加成反應(yīng)的改進(jìn)和應(yīng)用[D];山東大學(xué);2007年

7 李筱芳;1,3-偶極環(huán)加成反應(yīng)合成螺雜環(huán)化合物的研究[D];天津大學(xué);2004年

8 李家星;[60]富勒烯的親核環(huán)加成反應(yīng)研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2008年

9 由君;手性金屬配合物催化1,3-偶極環(huán)加成反應(yīng)的立體選擇性研究[D];哈爾濱理工大學(xué);2009年

10 楊海濤;富勒烯環(huán)加成反應(yīng)研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2006年

相關(guān)碩士學(xué)位論文 前10條

1 夏姝雅;幾類有機(jī)環(huán)化反應(yīng)的密度泛函理論研究[D];云南師范大學(xué);2017年

2 張瓊梅;叔膦催化的(4+n)環(huán)加成反應(yīng)研究[D];華東理工大學(xué);2011年

3 馬明霞;不對(duì)稱構(gòu)筑含三氟甲基的螺環(huán)氧化吲哚的研究[D];蘭州大學(xué);2015年

4 劉澤水;鈀催化的乙烯基環(huán)丙烷與原位產(chǎn)生的α,β-不飽和亞胺的不對(duì)稱[3+2]環(huán)加成反應(yīng)[D];西華師范大學(xué);2015年

5 張海申;可見光誘導(dǎo)的1,6-烯炔基化合物環(huán)加成反應(yīng)的研究[D];哈爾濱工業(yè)大學(xué);2015年

6 段紅玉;叔膦促進(jìn)的串聯(lián)成環(huán)反應(yīng)合成丁烯內(nèi)酯衍生物的研究[D];合肥工業(yè)大學(xué);2015年

7 陳燕瓊;手性四VA唑啉金屬絡(luò)合物催化1,3-偶極環(huán)加成反應(yīng)的研究[D];哈爾濱理工大學(xué);2011年

8 朱鴻博;茚及茚烷類衍生物的合成研究[D];蘭州交通大學(xué);2015年

9 曠國(guó)強(qiáng);基于吡唑并環(huán)己酮的螺雜環(huán)化合物的合成及工藝優(yōu)化[D];湖南科技大學(xué);2015年

10 王瀟瀟;路易斯酸及布朗斯特酸催化3-吲哚基甲醇的環(huán)加成反應(yīng)研究[D];青島科技大學(xué);2016年



本文編號(hào):2056186

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxue/2056186.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f8b6e***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com