功能化MCM-41介孔材料的制備及其吸附稀土離子的性能研究
本文選題:稀土 + 吸附 ; 參考:《南昌大學(xué)》2017年碩士論文
【摘要】:本文針對稀土資源開采過程中出現(xiàn)的回收不徹底、浪費嚴(yán)重等現(xiàn)狀,以綠色環(huán)保化學(xué)理念為指導(dǎo),以MCM-41為基體,成功制備兩種經(jīng)硅烷偶聯(lián)劑改性的新型中孔硅基材料。分別用于輕稀土離子La~(3+)、中稀土離子Gd~(3+)及重稀土離子Yb~(3+)的富集回收實驗。根據(jù)實驗結(jié)果,本文系統(tǒng)的探究了三種吸附劑對低濃度稀土離子的吸附及脫附行為。首先,采用水熱合成法,以正硅酸乙酯(TEOS)作為硅源,以十六烷基三甲基溴化銨(CTAB)作為模板劑,簡單高效的合成MCM-41分子篩,其BET孔徑及比表面積分別為2.94 nm、1114.8 m~2/g。通過加入APTES和MPTES這兩種偶聯(lián)劑,對其進(jìn)行孔道內(nèi)修飾,分別制備出了經(jīng)胺基、巰基功能化的NH_2-MCM-41和SH-MCM-41介孔材料,其BET孔徑及比表面積分別為2.15 nm、956.2 m~2/g和2.10 nm、956.0 m~2/g。偶聯(lián)劑成功進(jìn)入MCM-41基體內(nèi)部,實現(xiàn)了孔道內(nèi)表面修飾。其次,以合成的MCM-41、NH_2-MCM-41和SH-MCM-41為吸附劑,稀土離子La~(3+)、Gd~(3+)和Yb~(3+)為吸附質(zhì),對吸附單因素條件、等溫吸附、熱力學(xué)、動力學(xué)、吸附機理及再生性能進(jìn)行探究。實驗表明:MCM-41吸附劑對稀土離子La~(3+)、Gd~(3+)和Yb~(3+)的最大吸附量分別為434.08 mg/g、418.42 mg/g和492.40 mg/g;Fe~(3+)、Al~(3+)、Ca2+、Mg2+及NH4+五種干擾離子對稀土離子吸附量的影響:三價離子能與稀土離子形成競爭吸附從而降低其吸附量,其他離子對其吸附量影響很小。胺基的最佳(以N計)接枝量是1.98%,NH_2-MCM-41對Yb~(3+)的最大吸附量為709.70mg/g。吸附過程符合Freundlich等溫吸附模型,動力學(xué)可以用準(zhǔn)二級速率方程進(jìn)行描述。巰基的最佳(以S計)接枝量是6.06%;SH-MCM-41對La~(3+)、Gd~(3+)和Yb~(3+)的飽和吸附量分別達(dá)到了560.56 mg/g、507.85 mg/g和540.68 mg/g。最后,分別以鹽酸、硝酸和檸檬酸作為解吸劑,對吸附劑的洗脫及再生性能進(jìn)行探究。從綠色化學(xué)出發(fā),最佳解析條件是:2 mol/L的鹽酸溶液,解析1 h,SH-MCM-41吸附劑對La~(3+)、Gd~(3+)和Yb~(3+)初次解析率分別達(dá)到了93.4%、92.1%和95.3%左右;重復(fù)使用4次,吸附劑對稀土離子的吸附率均保持在80%以上,說明合成的吸附劑有良好的水熱穩(wěn)定性,可循環(huán)再生,節(jié)約吸附成本。
[Abstract]:In this paper, two new mesoporous silicon-based materials modified by silane coupling agent were successfully prepared under the guidance of green environmental chemical idea and MCM-41 matrix in view of the incomplete recovery and serious waste during the process of rare earth resource exploitation. It has been used for the enrichment and recovery experiments of light rare earth ions Lahuo 3, medium rare earth ions Gdl3) and heavy rare earth ions Ybt3), respectively. Based on the experimental results, the adsorption and desorption behavior of three kinds of adsorbents for rare earth ions with low concentration were systematically investigated. Firstly, using tetraethyl orthosilicate (TEOS) as silicon source and cetyltrimethylammonium bromide (CTAB) as template, MCM-41 molecular sieve was synthesized by hydrothermal method. The BET pore size and specific surface area of MCM-41 molecular sieve were 2.94 nm and 1114.8 mg / g, respectively. By adding APTES and MPTES, the mesoporous materials of NH2-MCM-41 and SH-MCM-41 were prepared. The pore size and specific surface area of BET were 2.15 nm ~ 956.2 m ~ (2 / g) and 2.10 nm ~ 956.0 m ~ (-2 / g), respectively, and the mesoporous materials of NH2-MCM-41 and SH-MCM-41 were prepared. The coupling agent successfully entered the MCM-41 matrix and realized the inner surface modification of the pore channel. Secondly, using the synthesized MCM-41 and SH-MCM-41 as adsorbents, rare earth ions Lazhu3 (Gddf3) and Ybc3) as adsorbents, the adsorption conditions, isotherms, thermodynamics, kinetics, adsorption mechanism and regeneration properties of MCM-41 and SH-MCM-41 were investigated. The experimental results show that the maximum adsorption capacity of the adsorbents for rare earth ions Laohou 3 (GdDH3) and Ybn3) are 434.08 mg / g ~ 418.42 mg/g and 492.40 mg / g / g ~ (3) C ~ (2 +) respectively. The effects of five kinds of interference ions, such as Ca ~ (2 +), mg _ (2) and NH _ 4, on the adsorption capacity of rare earth ions are as follows: the three valence ions can compete with the rare earth ions in the adsorption capacity of rare earth ions: three valence ions can compete with rare earth ions in the adsorption capacity of rare earth ions. To reduce the amount of adsorption, Other ions have little effect on the adsorption capacity. The best grafting amount of amino group is 1.98% NH _ 2-MCM-41 and the maximum adsorption capacity is 709.70 mg 路g ~ (-1) 路m ~ (-1) 路min ~ (-1) 路min ~ (-1). The adsorption process is in accordance with Freundlich isothermal adsorption model and the kinetics can be described by quasi second order rate equation. The optimum grafting capacity of thiol group is 6.06g / g SH-MCM-41, and the saturated adsorption capacity of Ybf3 is 560.56 mg / g / g ~ 507.85 mg/g and 540.68 mg / g / g, respectively, and the saturated adsorption capacity of SH-MCM-41 is 560.56 mg / g / g and 540.68 mg / g / g, respectively, and the saturated adsorption capacity of thiol group is 560.56 mg / g / g and 540.68 mg / g / g, respectively. Finally, hydrochloric acid, nitric acid and citric acid were used as desorption agents to study the elution and regeneration of adsorbent. From green chemistry, the best analytical conditions are: 1 mol / L hydrochloric acid solution, 1 h SH-MCM-41 adsorbent for Lazhiyang3 (GdDX 3) and Ybzao 3) for the first time resolution rates of 93.4% and 95.3% respectively, and repeated use for 4 times, and the optimum analytical conditions are as follows: (1) the first analytical rate is about 93.1% and 95.3% respectively, and the first analytical rate is about 93.4% and 95.3% respectively. The adsorption rates of rare earth ions were above 80%, which indicated that the synthesized adsorbents had good hydrothermal stability, could be recycled, and the adsorption cost could be saved.
【學(xué)位授予單位】:南昌大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB383.4;O647.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 Alireza Khorshidi;;中孔MCM-41負(fù)載Ru納米粒子催化劑用于超聲輻射下芳烴選擇氧化反應(yīng)(英文)[J];催化學(xué)報;2016年01期
2 劉鳳仙;邵蒙蒙;夏盛杰;倪哲明;;ZnCr雙金屬層狀材料對廢水中酸性紅14的吸附性能[J];無機化學(xué)學(xué)報;2015年07期
3 鄭廣偉;杜玉成;侯瑞琴;孫廣兵;王金淑;吳俊書;;γ-AlOOH/Al_2O_3修飾硅藻土的制備與Cs~+、Pb~(2+)吸附性能[J];無機化學(xué)學(xué)報;2015年05期
4 黎先財;蘭俊;胡偉強;楊沂鳳;李永繡;;CTS/納米SiO_2吸附劑對低濃度稀土離子的富集與回收[J];離子交換與吸附;2014年06期
5 康艷;黃杵睿;陳超;徐甜甜;廖洋;趙仕林;;改性固化單寧對稀土離子Pr~(3+),Nd~(3+)吸附性能研究[J];中國稀土學(xué)報;2014年06期
6 黃福;張帆;王波;孫華菊;;還原態(tài)氧化石墨烯對Zn(Ⅱ)的吸附動力學(xué)與熱力學(xué)[J];應(yīng)用化學(xué);2014年12期
7 邢蓉;張彤;費正皓;施衛(wèi)忠;;FDU-15介孔材料對水溶液中苯甲酸的吸附研究[J];離子交換與吸附;2013年06期
8 彭洪根;王達(dá)銳;徐樂;吳鵬;;Rh(OH)_x/TS-1@KCC-1雙功能催化劑上一鍋反應(yīng)合成伯酰胺(英文)[J];催化學(xué)報;2013年11期
9 廖慶玲;曾黎明;郭峰;李玲玲;袁楚;;功能化MCM-41的制備及對重金屬離子的吸附研究[J];水處理技術(shù);2013年04期
10 葉修群;王希龍;黃曜;;有序含氮介孔碳對金屬離子的吸附性能[J];復(fù)旦學(xué)報(自然科學(xué)版);2013年01期
相關(guān)博士學(xué)位論文 前2條
1 黃進(jìn);多功能介孔硅基吸附劑的制備及其對重金屬廢水的處理研究[D];上海師范大學(xué);2013年
2 馬玉芹;功能化SBA-15納米分子篩去除水中污染物的性能研究[D];東北師范大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 王悅;低濃度稀土溶液中稀土的富集與氨氮的處理[D];南昌大學(xué);2015年
2 楊陽;官能化介孔/微孔材料的制備及其對重金屬離子的吸附研究[D];海南大學(xué);2015年
3 古興興;介孔分子篩MCM-48對水溶液中有機物的吸附性能研究[D];浙江師范大學(xué);2013年
4 鄒函君;改性MCM-41介孔分子篩的制備、表征及其性能研究[D];重慶大學(xué);2013年
5 王勤勤;基于SiO_2/MCM-41環(huán)境功能材料的構(gòu)筑及其在水處理中的應(yīng)用研究[D];西北大學(xué);2013年
6 安靜;赤泥負(fù)載稀土吸附劑的制備和應(yīng)用[D];湖南科技大學(xué);2012年
7 戚曉燕;有機功能化介孔材料的合成、表征及其對釷的吸附性能研究[D];南華大學(xué);2012年
8 劉雅蘭;功能化介孔氧化硅材料對U(Ⅵ)的吸附行為研究[D];南華大學(xué);2012年
9 李創(chuàng)舉;基于MCM-41功能化材料對廢水中銅離子的吸附研究[D];重慶大學(xué);2010年
10 王道軍;有序介孔材料的制備與修飾及其對Cr(Ⅵ)、Cu(Ⅱ)的吸附行為[D];南京航空航天大學(xué);2010年
,本文編號:2011891
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2011891.html