光子晶體慢光效應(yīng)及光傳輸特性研究
發(fā)布時間:2018-06-04 04:33
本文選題:慢光 + 表面波; 參考:《電子科技大學(xué)》2016年碩士論文
【摘要】:慢光不僅可加強(qiáng)光與物質(zhì)間的相互作用,還能控制這種相互作用的光譜帶寬,實現(xiàn)全光存儲系統(tǒng)中的延遲和臨時存儲光功能。因此研究光子晶體慢光技術(shù)是非常有意義的。傳統(tǒng)的實驗室實現(xiàn)慢光所需的條件非常嚴(yán)格,使得很難將慢光效應(yīng)應(yīng)用到實際工程當(dāng)中去。在光子晶體中實現(xiàn)慢光,不需要特殊的外部條件,一般實驗室環(huán)境下就能進(jìn)行。由于光子晶體是高色散結(jié)構(gòu),通過修改光子晶體的本構(gòu)參數(shù)或者建立獨特的結(jié)構(gòu),其性質(zhì)可以改變慢波。本文是以破壞光子晶體的周期結(jié)構(gòu)實現(xiàn)慢光效應(yīng)作為研究對象,主要內(nèi)容如下:1、介紹了關(guān)于光子晶體及慢光技術(shù)的背景知識及研究意義。并對相關(guān)技術(shù)的發(fā)展現(xiàn)狀和需要解決的問題進(jìn)行了總結(jié)。然后,對光子晶體的電磁特性和慢光效應(yīng)進(jìn)行分析,用圖文說明其慢光產(chǎn)生的原理。并詳細(xì)闡述與本文相關(guān)的、現(xiàn)有的研究方法。2、提出了一種新的基于表面布洛赫模式的表面光子晶體慢光結(jié)構(gòu)。并利用Rsoft軟件通過平面波展開法對其表面的色散模式進(jìn)行分析。對缺陷導(dǎo)模色散曲線平坦部分的分析可揭露表面缺陷光子光子晶體結(jié)構(gòu)的慢光性質(zhì)。設(shè)計平坦的缺陷導(dǎo)模色散曲線,獲得更低群速度色散慢光屬性。用有限元法分析得到有效的慢光現(xiàn)象,用COMSOL Multiphysics仿真軟件在時域內(nèi)得到了驗證。3、針對線缺陷波導(dǎo)提出了兩種線缺陷結(jié)構(gòu),即減小中間一排介質(zhì)柱半徑和刪除中間一排介質(zhì)柱中的部分。使用平面波展開法,通過改變介質(zhì)柱的半徑,可得正方形晶格光子晶體半徑為0.20a時,其周期結(jié)構(gòu)的最大光子帶隙。然后對光在兩種正方形晶格光子晶體線缺陷波導(dǎo)中的傳輸進(jìn)行數(shù)值分析,以缺陷介質(zhì)柱半徑作為變量進(jìn)行仿真分析,選取波導(dǎo)的最佳結(jié)構(gòu)。用有限元法,在COMSOL Multiphysics的頻域和時域中分別模擬光在兩種結(jié)構(gòu)中的傳輸特性。得到平面波在結(jié)構(gòu)一和結(jié)構(gòu)二波導(dǎo)中的傳輸群速分別為0.25c和0.172c,結(jié)果均與使用平面波展開法中的數(shù)值結(jié)論吻合。
[Abstract]:Slow light can not only enhance the interaction between light and matter, but also control the spectral bandwidth of the interaction, and realize the delay and temporary storage function in all-optical storage system. So it is very meaningful to study the slow light technology of photonic crystal. It is very difficult to apply the slow light effect to practical projects because of the strict conditions required by traditional laboratories to realize slow light. The realization of slow light in photonic crystals does not require special external conditions and can be carried out in general laboratory environments. Since photonic crystals are highly dispersive, slow waves can be changed by modifying the constitutive parameters of photonic crystals or establishing unique structures. The aim of this paper is to realize slow light effect by destroying the periodic structure of photonic crystals. The main contents are as follows: 1. The background knowledge and significance of photonic crystals and slow light technology are introduced. The status quo of related technologies and the problems that need to be solved are summarized. Then, the electromagnetic characteristics and slow light effect of photonic crystal are analyzed, and the principle of slow light generation is illustrated. A new surface photonic crystal slow light structure based on surface Bloch mode is proposed. The dispersion mode of the surface is analyzed by the plane wave expansion method using Rsoft software. The analysis of the flat part of the dispersion curve of the defect can reveal the slow light properties of the photonic crystal structure with surface defects. A flat defect guided mode dispersion curve is designed to obtain lower group velocity dispersion slow light properties. The effective slow light phenomenon is obtained by finite element method, and verified by COMSOL Multiphysics software in time domain. Two kinds of linear defect structures are proposed for the waveguide with linear defects. That is, reducing the radius of the middle row of the medium column and removing the part from the middle row of the medium column. By changing the radius of the dielectric column, the maximum photonic band gap of the periodic structure can be obtained when the radius of the square lattice photonic crystal is 0.20a by using the plane wave expansion method. Then the propagation of light in two square lattice photonic crystal waveguides with linear defects is analyzed numerically. The radius of the defect dielectric cylinder is taken as the variable to simulate and analyze, and the optimal structure of the waveguide is selected. The finite element method is used to simulate the propagation characteristics of light in COMSOL Multiphysics in frequency domain and time domain respectively. The group velocities of plane waves in structure-one and structure-two waveguides are 0.25c and 0.172c, respectively. The results are in good agreement with the numerical results obtained by using the plane wave expansion method.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:O734
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 李正華;薛燕陵;沈廷根;;光子晶體內(nèi)的慢光及其應(yīng)用[J];激光與紅外;2008年01期
2 掌蘊(yùn)東;翁文;喻波;袁萍;;光子晶體波導(dǎo)慢光技術(shù)[J];激光與光電子學(xué)進(jìn)展;2007年10期
3 趙緒新;二維光子晶體帶隙結(jié)構(gòu)的透射特性[J];量子電子學(xué)報;2004年04期
,本文編號:1975944
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1975944.html
最近更新
教材專著