天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 化學(xué)論文 >

鍶摻雜對(duì)氧化鑭催化甲烷氧化偶聯(lián)反應(yīng)的影響(英文)

發(fā)布時(shí)間:2018-05-30 17:14

  本文選題:甲烷活化 + 甲基自由基產(chǎn)生; 參考:《催化學(xué)報(bào)》2017年05期


【摘要】:甲烷氧化偶聯(lián)反應(yīng)(OCM)是天然氣直接轉(zhuǎn)化利用的重要途徑之一.該反應(yīng)通過甲烷和氧氣在催化劑作用下一步將甲烷直接轉(zhuǎn)化為乙烯等具有高附加值的產(chǎn)品,避免了涉及高能耗過程的合成氣間接路徑,不僅有可能減少中間副產(chǎn)物的生成,還有可能大大提升整個(gè)過程的能源利用效率.因此,研究OCM反應(yīng)具有十分重要的實(shí)際意義.目前氧化鑭基催化劑具有良好的催化活性、產(chǎn)物選擇性和熱穩(wěn)定性,但在OCM反應(yīng)中產(chǎn)品收率仍未能達(dá)到工業(yè)應(yīng)用的要求,因而近幾十年來高效OCM催化劑的研發(fā)一直是研究熱點(diǎn).實(shí)驗(yàn)發(fā)現(xiàn),鍶摻雜氧化鑭催化劑具有更為優(yōu)異的催化性能,主要表現(xiàn)在具有比純氧化鑭催化劑更高的催化活性和產(chǎn)物選擇性,但對(duì)于鍶摻雜的影響機(jī)制仍然缺乏系統(tǒng)的理論研究.目前普遍認(rèn)為,甲烷活化是OCM反應(yīng)的第一步,也是決速步,這主要是由于C-H鍵活化需要越過很高的能壘,因此往往需要很高的溫度.本文主要采用團(tuán)簇模型,通過密度泛函理論計(jì)算來研究OCM反應(yīng)中鍶摻雜對(duì)氧化鑭催化劑上甲烷活化性能的影響及其作用原理.本文構(gòu)建了八種鍶摻雜的氧化鑭團(tuán)簇作為該催化劑模型,可分為沒有自由基性質(zhì)的團(tuán)簇(LaSrO_2(OH),La_2SrO_4,La_3SrO_5(OH),La_5SrO_8(OH))和具有自由基性質(zhì)的團(tuán)簇(LaSrO_3,La_2SrO_4(OH),La_3SrO_6,La_5SrO_9).我們計(jì)算了甲烷在這些鍶摻雜氧化鑭團(tuán)簇上Sr-O和La-O酸堿對(duì)位點(diǎn)以及氧自由基活性位點(diǎn)上的活化機(jī)制,以研究鍶摻雜對(duì)OCM反應(yīng)活性的影響,并與我們前期計(jì)算的純氧化鑭團(tuán)簇上甲烷活化性能進(jìn)行了對(duì)比.通過計(jì)算甲烷在不同鍶摻雜氧化鑭團(tuán)簇上的物理和化學(xué)吸附能、活化能壘以及甲基自由基的脫附能,發(fā)現(xiàn)鍶摻雜氧化鑭團(tuán)簇上的甲烷活化在熱力學(xué)和動(dòng)力學(xué)上都要比純氧化鑭團(tuán)簇上更為有利.對(duì)于具有相同金屬原子數(shù)目的團(tuán)簇,甲烷在La-O上活化的能壘大小為:化學(xué)計(jì)量比的La-Sr-O團(tuán)簇非化學(xué)計(jì)量比的La-Sr-O團(tuán)簇化學(xué)計(jì)量比的La-O團(tuán)簇;而甲烷在Sr-O上活化的能壘大小依次是:化學(xué)計(jì)量比的La-Sr-O團(tuán)簇非化學(xué)計(jì)量比的La-Sr-O團(tuán)簇.給定一個(gè)鍶摻雜氧化鑭團(tuán)簇,甲烷在不同活化位點(diǎn)上的活化能壘大小通常是:O·Sr-OLa-O,其中無論何種性質(zhì)的鍶摻雜氧化鑭團(tuán)簇,甲烷在Sr-O上的反應(yīng)活性要高于La-O上的,而對(duì)于具有自由基特征的鍶摻雜氧化鑭團(tuán)簇,甲烷更容易在氧自由基位點(diǎn)上發(fā)生解離.此外,對(duì)于沒有自由基特征的鍶摻雜氧化鑭團(tuán)簇,甲基自由基的脫附如同純氧化鑭團(tuán)簇一樣是強(qiáng)吸熱過程.相反,對(duì)于具有自由基特性的鍶摻雜氧化鑭團(tuán)簇,甲基自由基的脫附則十分容易.由此可見,鍶摻雜促進(jìn)氧化鑭催化劑上OCM反應(yīng)活性主要有以下兩個(gè)原因:(1)通過摻雜可以提供具有自由基特性的氧活性位點(diǎn),(2)對(duì)于非自由基性質(zhì)的團(tuán)簇,可以增強(qiáng)金屬.氧對(duì)位點(diǎn)的堿性和甲烷反應(yīng)活性,從而有效降低了甲烷的活化能壘和甲基自由基的脫附能.
[Abstract]:The oxidative coupling reaction of methane (OCM) is one of the important ways of direct conversion and utilization of natural gas. This reaction directly converts methane to high value-added products such as ethylene through methane and oxygen in the catalyst, thus avoiding the indirect pathway of syngas involved in high-energy consumption processes, which may not only reduce the formation of intermediate by-products. It is also possible to greatly improve the energy efficiency of the whole process. Therefore, the study of OCM reaction is of great practical significance. At present, lanthanum oxide catalysts have good catalytic activity, product selectivity and thermal stability, but the yield of products in OCM reaction is still not up to the requirements of industrial application. Therefore, the research and development of high efficiency OCM catalyst has been a hot topic in recent decades. It is found that strontium doped lanthanum oxide catalysts have better catalytic performance, mainly because of their higher catalytic activity and product selectivity than pure lanthanum oxide catalysts. However, the mechanism of strontium doping is still lack of systematic theoretical study. At present, it is generally believed that methane activation is the first step and the fast step of OCM reaction. This is mainly due to the fact that C-H bond activation needs to cross the high barrier, so it often requires a very high temperature. In this paper, the effect of strontium doping on the activation of methane on La _ 2O _ 3 catalyst in OCM reaction was studied by means of cluster model and density functional theory (DFT). In this paper, eight strontium doped lanthanum oxide clusters have been constructed as the catalyst model, which can be divided into LaSrO2O2OHHHHO _ 4 and La5SrO _ 5O _ 5O _ (5 / O) and La5SrO _ (5o _ 5O _ (5) O _ (HH) and LaSrO _ (3) / La _ (2SrO _ (4) O _ (4) O _ (H) / La3SrO _ (6) La-5SrO _ (9T). We have calculated the activation mechanism of methane on the sites of Sr-O and La-O acid-base pairs and the active sites of oxygen free radicals on these strontium doped lanthanum oxide clusters, in order to study the effect of strontium doping on the activity of OCM reaction. The activation properties of methane on pure lanthanum oxide clusters calculated by our previous calculations were compared. The physical and chemical adsorption energy, activation energy barrier and desorption energy of methyl radical on different strontium doped lanthanum oxide clusters were calculated. It is found that the activation of methane on strontium doped lanthanum oxide clusters is more advantageous in thermodynamics and kinetics than in pure lanthanum oxide clusters. For clusters with the same number of metal atoms, the energy barrier for methane activation on La-O is as follows: La-Sr-O cluster with stoichiometric ratio, La-Sr-O cluster with non-stoichiometric ratio, La-O cluster with stoichiometric ratio; The energy barrier of methane activation on Sr-O is the La-Sr-O cluster with stoichiometric ratio and the non-stoichiometric La-Sr-O cluster with stoichiometric ratio. Given a strontium doped lanthanum oxide cluster, the activation energy barrier of methane at different activation sites is usually O: O Sr-O La-O, in which no matter what kind of strontium doped lanthanum oxide cluster, methane reactivity on Sr-O is higher than that on La-O. For strontium doped lanthanum oxide clusters with free radicals, methane dissociates more easily at oxygen free radical sites. In addition, for strontium doped lanthanum oxide clusters without free radical characteristics, the desorption of methyl radical is a strong endothermic process as pure lanthanum oxide clusters. On the contrary, for strontium doped lanthanum oxide clusters with free radical properties, it is very easy to remove methyl radical from lanthanum oxide clusters. It can be seen that strontium doping can promote the activity of OCM reaction on lanthanum oxide catalyst for the following two reasons: (1) the oxygen active site with free radical property can be provided by doping) the metal can be enhanced for the clusters with non-free radical properties. The activation energy barrier of methane and the desorption energy of methyl radical can be effectively reduced by the alkalinity of oxygen to sites and the activity of methane.
【作者單位】: 中國科學(xué)院上海高等研究院低碳轉(zhuǎn)化科學(xué)與工程中心;中國科學(xué)院大學(xué);上?萍即髮W(xué)物質(zhì)科學(xué)與技術(shù)學(xué)院;
【基金】:supported by the National Natural Science Foundation of China(21473233,21403277) the Frontier Science Program of Shell Global Solutions International B.V.(PT32281) the Ministry of Science and Technology of China(2016YFA0202802) the Shanghai Municipal Science and Technology Commission(14ZR1444600)~~
【分類號(hào)】:O621.251

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 鐘興厚,孫聚堂,蔣昌武,何喜慶,杜秀珍,李寧先,許廉發(fā);溴氫氧化鑭的合成及結(jié)構(gòu)[J];高等學(xué);瘜W(xué)學(xué)報(bào);1981年04期

2 朱永鉙,徐景明,張偉,莊永能,梁俊福,宋崇立,陳毅東,孟祖貴;氧化鑭中放射性的去除——Ⅰ.氧化鑭中放射性雜質(zhì)元素的測定[J];核化學(xué)與放射化學(xué);1987年02期

3 宋力,陳雄斌,張克立;氧化鑭活性的熱分析研究[J];信陽師范學(xué)院學(xué)報(bào)(自然科學(xué)版);1999年01期

4 喻雪琳,鄧漢芹;氧化鑭粒徑的測定[J];理化檢驗(yàn)(物理分冊(cè));2003年08期

5 侯曉紅;徐剛;魏曉;韓高榮;;氫氧化鑭納米線的水熱合成及其表征[J];稀有金屬材料與工程;2008年S2期

6 陳妍;;硬脂酸法合成超細(xì)氧化鑭粉末[J];科技信息(科學(xué)教研);2008年15期

7 馬志誠,莊永泉,許建平;高純氧化鑭中十四個(gè)稀土雜尛的直接光譜與化學(xué)光譜測定[J];稀土;1982年04期

8 張世榮,涂贛峰,張成祥,任存治,李春材;氧化鑭碳化行為的研究[J];稀土;1997年05期

9 羅旭東;曲殿利;謝志鵬;秦彬;宋陽;;氧化鑭對(duì)鎂橄欖石晶體結(jié)構(gòu)及性能的影響(英文)[J];硅酸鹽通報(bào);2013年09期

10 蘇勉曾,王彥吉;溴氧化鑭鋱穩(wěn)定性的研究[J];高等學(xué)校化學(xué)學(xué)報(bào);1982年S1期

相關(guān)會(huì)議論文 前3條

1 丁家文;吳燕利;孫偉麗;李永繡;;一種由氧化物水化制備棒狀La(OH)_3和La_2O_3的簡便方法[A];中國稀土學(xué)會(huì)第一屆青年學(xué)術(shù)會(huì)議論文集[C];2005年

2 姜春華;陳立民;于晶雪;艾鳳革;;電感耦合等離子質(zhì)譜法測定高純氧化鑭中痕量稀土雜質(zhì)[A];中國稀土學(xué)會(huì)第四屆學(xué)術(shù)年會(huì)論文集[C];2000年

3 李波;;雜化氧化鑭及其對(duì)于甲烷分解的催化性質(zhì)的密度泛函理論研究[A];中國化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第13分會(huì)場摘要集[C];2012年

相關(guān)碩士學(xué)位論文 前3條

1 田佳;氧化鑭中稀土雜質(zhì)的LA-ICP-MS分析方法研究[D];北京有色金屬研究總院;2016年

2 李茜;超微氧化鑭顆粒制備及性能研究[D];天津科技大學(xué);2010年

3 曾清全;微波及超聲波輔助制備超細(xì)氧化鑭的實(shí)驗(yàn)研究[D];江西理工大學(xué);2012年

,

本文編號(hào):1956102

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxue/1956102.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶4ccc9***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
久久91精品国产亚洲| 殴美女美女大码性淫生活在线播放| 婷婷一区二区三区四区| 国产三级黄片在线免费看| 国产精品成人一区二区在线| 久久精品视频就在久久| 国产一区欧美一区二区| 国产精品午夜福利免费在线| 老司机精品一区二区三区| 久久这里只有精品中文字幕| 国产丝袜女优一区二区三区| 国产精品一区二区不卡中文| 国产成人在线一区二区三区| 欧美一二三区高清不卡| 中文字幕熟女人妻视频| 亚洲精品偷拍视频免费观看| 激情五月天免费在线观看| 国产毛片av一区二区三区小说| 日韩一区二区三区在线欧洲| 欧美三级精品在线观看| 99一级特黄色性生活片| 丁香六月婷婷基地伊人| 空之色水之色在线播放 | 91精品国自产拍老熟女露脸| 亚洲欧洲日韩综合二区| 日本一本在线免费福利| 五月综合激情婷婷丁香| 欧美日韩国产午夜福利| 精品国产亚洲av久一区二区三区| 欧美激情区一区二区三区| 国产精品福利一二三区| 国产又粗又硬又长又爽的剧情 | 在线观看中文字幕91| 婷婷激情五月天丁香社区| 日韩一本不卡在线观看| 日韩一区二区免费在线观看| 一区二区三区国产日韩| 国产美女精品午夜福利视频| 亚洲欧美日韩色图七区| 欧美欧美欧美欧美一区| 欧美精品一区二区水蜜桃|