魔芋葡甘聚糖—碳納米管氣凝膠附著機(jī)理及應(yīng)用研究
本文選題:魔芋 + 碳納米管 ; 參考:《福建農(nóng)林大學(xué)》2017年碩士論文
【摘要】:作為世界超級人口大國的中國,專家預(yù)計(jì)到本世紀(jì)2030年,人口數(shù)量將達(dá)到16億,屆時(shí)人均陸地面積將降為0.008平方公里,與世界人均0.3平方公里的水平相差甚遠(yuǎn)。且陸地上的各類資源,隨著人口的增長、人為的開發(fā)和破壞,日漸匾乏,破壞狀況令人擔(dān)憂。為了滿足十幾億人口對食物、淡水的日益增長的需求,在運(yùn)用科學(xué)發(fā)展觀和可持續(xù)發(fā)展的基礎(chǔ)上,采用納米吸附技術(shù)等現(xiàn)代高新技術(shù),合理開發(fā)利用海洋資源和重復(fù)可循環(huán)利用治理污染水源,是未來海洋資源和污水開發(fā)、利用的必由之路。魔芋葡甘聚糖(KGM)是一種天然高分子多糖,在溶膠狀態(tài)下,添入堿同時(shí)加熱,可脫去乙酰基團(tuán),得到非常有彈性的凝膠,類似于橡膠。本文以魔芋粉、碳納米管為實(shí)驗(yàn)對象,通過添加不同復(fù)配魔芋葡甘聚糖-碳納米管氣凝膠,并進(jìn)行力學(xué)、物理學(xué)性質(zhì)對比比較,最后采用吸附試驗(yàn),探討模擬研究魔芋葡甘聚糖-碳納米管氣凝膠的應(yīng)用。本文的主要研究內(nèi)容和結(jié)果如下:1、分別制備魔芋葡甘聚糖-單壁、雙壁、多壁碳納米管氣凝膠的實(shí)驗(yàn),對比不同魔芋葡甘聚糖-碳納米管氣凝膠品質(zhì)的力學(xué)、物理學(xué)性質(zhì)。實(shí)驗(yàn)結(jié)果表明添加了單壁、雙壁、多壁碳納米管后,脫乙酰KGM復(fù)合溶膠能夠更好地支撐重于自己數(shù)倍重量的物體,且還原性較好。所有的KGM在溶膠中的剪切粘度與剪切速率偏離了線性關(guān)系,流動曲線符合Power Law模型σ=KYn。單壁和雙壁復(fù)合體中,流體假塑性隨著濃度的增加呈現(xiàn)增加的趨勢,表觀粘度增加。多壁復(fù)合體流體假塑性隨著濃度的增加,表觀粘度顯著下降,流體假塑性減少。動態(tài)頻率掃描表明,各個(gè)配比的復(fù)合溶膠的樣品測試差異比較大,所有樣品均具有較寬的線性炥彈區(qū)。在低頻率下,KGM、脫乙酰KGM-單壁和雙壁碳納米管復(fù)合溶膠的損耗模量(G")均大于儲能模量(G')。質(zhì)構(gòu)數(shù)據(jù)表明不同濃度的脫乙酰KGM-單壁和雙壁碳納米管復(fù)合凝膠的質(zhì)構(gòu)特性參數(shù)較為接近,脫乙酰KGM-多壁碳納米管復(fù)合凝膠的壓縮性幾乎只有脫乙酰KGM--單壁和雙壁碳納米管復(fù)合凝膠壓縮性的一半,但彈性、內(nèi)聚性和回復(fù)性又比脫乙酰KGM--單壁和雙壁碳納米管凝膠的參數(shù)高出一倍。2、分別制備無添加、魔芋葡甘聚糖-羧基化、羥基化魔芋葡甘聚糖氣凝膠的實(shí)驗(yàn),對比添加不同基團(tuán)的碳納米管所形成的魔芋氣凝膠的力學(xué)性質(zhì)與物理性質(zhì)。實(shí)驗(yàn)數(shù)據(jù)表明添加了羥基、羧基碳納米管后,脫乙酰KGM復(fù)合溶膠能夠更好地支撐重于自己數(shù)倍重量的物體,且還原性較好。所有的KGM在溶膠中的剪切粘度與剪切速率偏離了線性關(guān)系,流動曲線符合Power Law模型σ=KYn,溶膠均表現(xiàn)為假塑性流體。動態(tài)頻率掃描表明,各個(gè)配比的復(fù)合溶膠的樣品測試差異比較大,所有樣品均具有較寬的線性炥彈區(qū)。在低頻率下,KGM、脫乙酰KGM-羧基、羥基魔芋葡甘聚糖復(fù)合溶膠的損耗模量(G")均大于儲能模量(G")。質(zhì)構(gòu)數(shù)據(jù)中可以看出無添加碳納米管的KGM復(fù)合凝膠質(zhì)構(gòu)的各項(xiàng)指標(biāo)均比添加了碳納米管的KGM復(fù)合凝膠低。3、以羧基魔芋葡甘聚糖-碳納米管氣凝膠作為吸附劑,對甲基橙溶液進(jìn)行吸附,通過標(biāo)準(zhǔn)曲線、pH值、離子強(qiáng)度、動力學(xué)、熱力學(xué)等實(shí)驗(yàn),研究魔芋葡甘聚糖-碳納米管氣凝膠對甲基橙的吸附能力,得出以下結(jié)論:(1)隨著pH升高,吸附量從高逐漸降低,在pH=7時(shí)最低,之后隨著pH值的升高逐漸緩慢上升。當(dāng)pH=3時(shí),吸附量最高,為18.18 mg/g;當(dāng)pH=7時(shí),達(dá)到吸附量最低值為0.25mg/g。(2)通過離子強(qiáng)度對吸附影響實(shí)驗(yàn),發(fā)現(xiàn)Cacl2溶液對甲基橙吸附影響不大,而當(dāng)NaCl濃度≤0.20mol/L,隨著NaCl濃度增加,羥基化多壁魔芋葡甘聚糖-碳納米管氣凝膠對甲基橙吸附量均勻不變,為6mg/g的吸附量。當(dāng)NaCl濃度0.20mol/L,吸附量迅速上升,達(dá)到12mg/g的吸附量。(3)在吸附時(shí)間和等溫吸附試驗(yàn)中,發(fā)現(xiàn)吸附效率隨時(shí)間先增大,在300min時(shí)達(dá)到最大值后穩(wěn)定在較高值。整個(gè)吸附過程符合假二階動力學(xué)方程和Freundlich等溫吸附模型,且吸附行為主要是依靠物理吸附作用。
[Abstract]:As the world's superpopulous country, the population is expected to reach 1 billion 600 million of the population by 2030 of this century, and the land area per capita will fall to 0.008 square kilometers, which is far from 0.3 square kilometers per capita in the world. And all kinds of resources on land, with the growth of the population, human development and destruction, are increasingly lacking and destroyed. In order to meet the growing demand of more than a billion people on food and fresh water, on the basis of Scientific Outlook on Development and sustainable development, the modern high-tech technologies such as nano adsorption technology are adopted, and the rational exploitation and utilization of marine resources and the repeated recycling of polluted water are the future development of marine resources and sewage. The only way to use. Konjac glucomannan (KGM) is a natural macromolecule polysaccharide. Under the condition of the sol-gel, it is added to the alkali and can be heated simultaneously. It can remove the acetyl group and get the very elastic gel, similar to the rubber. In this paper, the konjac powder and carbon nanotubes were used as the experimental objects by adding different compound konjac glucomannan carbon nanotube aerogels. The main contents and results of this paper are as follows: 1, the experiment of preparing konjac glucomannan - single wall, double wall, multi wall carbon nanoscale aerogels, and the comparison of different konjac glucomannan - carbon nanoscale The mechanical and physical properties of the quality of the rice tube aerogel. The experimental results show that the addition of single wall, double wall, multi wall carbon nanotubes, the deacetylation KGM composite sol can better support the weight of several times the weight of the body, and the reducibility is better. The shear viscosity of all KGM in the sol and the shear rate deviate from the linear relationship, flow curve. In the Power Law model Sigma =KYn. single wall and double wall complex, the pseudoplasticity of the fluid increases with the increase of the concentration, and the apparent viscosity increases. The apparent viscosity decreases significantly and the fluid pseudoplasticity decreases with the increase of the concentration. The dynamic frequency scanning shows that the sample test of the composite sols of each ratio is poor. At low frequency, the loss modulus of KGM, KGM- single wall and double wall carbon nanotube composite sol (G ") is larger than the energy storage modulus (G') at low frequency. The compressibility of the acetyl KGM- multi walled carbon nanotube composite gel is almost only half of the gel compressibility of the deacetylation KGM-- single wall and double walled carbon nanotubes, but the elasticity, cohesion and resilience are twice as high as the parameters of the deacetylation KGM-- single wall and double wall carbon nanotube gels, and the separation preparation is not added, the konjac glucomannan carboxylation, hydroxyl group, and hydroxyl group are not added. The experiments of konjac glucomannan aerogel were conducted to compare the mechanical and physical properties of the konjac aerogels with different groups of carbon nanotubes. The experimental data showed that after the addition of hydroxyl group and carboxyl carbon nanotubes, the deacetylation KGM composite sol could better support objects weighing several times the weight of their own, and the reducibility was better. The shear viscosity of some KGM deviates from the shear rate linearly, the flow curve fits the Power Law model Sigma =KYn and the sol is pseudoplastic fluid. The dynamic frequency scanning shows that the sample test of the composite sol is different in different proportions, and all samples have a wide linear elastic zone. At low frequency, KGM, stripping. The loss modulus (G ") of the acetyl KGM- carboxyl, hydroxy konjac glucomannan composite sol (G") is greater than the energy storage modulus (G "). In texture data, it is found that all the indexes of the KGM composite gel without carbon nanotubes are lower than that of the KGM composite gel added with carbon nanotubes, and the carboxyl konjac glucomannan carbon nanotube aerogel is used as adsorption. By adsorption of methyl orange solution, the adsorption capacity of konjac glucomannan carbon nanotube aerogel to methyl orange was studied through the standard curve, pH value, ionic strength, kinetics, thermodynamics and other experiments. The following conclusion was drawn: (1) with the increase of pH, the adsorption amount decreased gradually, the lowest at pH=7, and then slowly along with the increase of the pH value. When pH=3, the adsorption amount is the highest, 18.18 mg/g; when pH=7, the lowest adsorption amount is 0.25mg/g. (2) through the ion strength to the adsorption experiment, it is found that Cacl2 solution has little influence on the adsorption of methyl orange, while NaCl concentration is less than 0.20mol/L, with the increase of NaCl concentration, the hydroxylation of multi wall konjac glucomannan carbon nanotube aerogel to methyl methylation The adsorption quantity of the orange is constant and the adsorption amount of 6mg/g. When the concentration of NaCl is 0.20mol/L, the adsorption amount rises rapidly to reach the adsorption quantity of 12mg/g. (3) the adsorption efficiency is first increased in the adsorption time and isothermal adsorption test, and the maximum value is stable at 300min when the maximum value is reached. The whole adsorption process is in accordance with the pseudo two order kinetic equation and Fre. Undlich isothermal adsorption model, and adsorption behavior mainly depends on physical adsorption.
【學(xué)位授予單位】:福建農(nóng)林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O648.17;O647.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 溫成榮;尹娜;龐杰;李崇高;孫中琦;余程程;;魔芋葡甘聚糖對高;Y(jié)冷膠晶態(tài)的影響[J];現(xiàn)代食品科技;2015年02期
2 溫成榮;潘娟;龐杰;;魔芋葡甘聚糖/威蘭膠體系流變性能研究[J];糧食與油脂;2014年06期
3 孫中琦;王雅立;趙菲;龐杰;;魔芋葡甘聚糖凝膠結(jié)構(gòu)研究進(jìn)展[J];中國食品添加劑;2014年04期
4 龐杰;馬真;沈本澍;許慶金;孫中琦;傅麗群;方文瑜;溫成榮;;Hydrogen Bond Networks' QSAR and Topologica Analysis of Konjac Glucomannan Chains[J];結(jié)構(gòu)化學(xué);2014年03期
5 王麗霞;肖麗霞;龐杰;;魔芋葡甘聚糖對草酸鈣晶體生長的抑制作用[J];天然產(chǎn)物研究與開發(fā);2013年12期
6 陳曉芳;張佳;霍宇凝;李和興;;三維有序大孔CdS/TiO_2薄膜的制備及其可見光催化性能[J];催化學(xué)報(bào);2013年05期
7 范琳琳;彭樹輝;溫成榮;何明祥;魏雪琴;吳春華;姚閩娜;馮瑞;龐杰;;Analysis of Influential Factors of Konjac Glucomannan(KGM) Molecular Structure on Its Activity[J];結(jié)構(gòu)化學(xué);2012年04期
8 王志江;鄭朕;李風(fēng)靈;羅嘉溈;熊波;;魔芋葡甘聚糖化學(xué)結(jié)構(gòu)及生理功能研究進(jìn)展[J];農(nóng)產(chǎn)品加工(學(xué)刊);2011年08期
9 ;Adsorption of graphene oxide/chitosan porous materials for metal ions[J];Chinese Chemical Letters;2011年07期
10 王麗霞;姚閩娜;王芹;史君彥;彭定利;劉秋麗;;魔芋葡甘聚糖結(jié)構(gòu)的研究進(jìn)展[J];食品與機(jī)械;2011年03期
相關(guān)博士學(xué)位論文 前2條
1 李晶;冷凍影響脫乙酰魔芋葡甘聚糖凝膠的機(jī)制與應(yīng)用[D];華中農(nóng)業(yè)大學(xué);2014年
2 于曉冬;碳納米管的懸浮及其對抗生素類藥物的吸附機(jī)理研究[D];中國海洋大學(xué);2010年
相關(guān)碩士學(xué)位論文 前1條
1 周蕾;多壁碳納米管的改性及其吸附性能研究[D];中南大學(xué);2013年
,本文編號:1927931
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1927931.html