天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 化學(xué)論文 >

乙炔選擇性加氫反應(yīng)中Cu催化劑表面結(jié)構(gòu)、價(jià)態(tài)及金屬摻雜對(duì)乙烯選擇性的影響

發(fā)布時(shí)間:2018-05-23 12:40

  本文選題:乙炔選擇性加氫 + Cu催化劑 ; 參考:《太原理工大學(xué)》2017年碩士論文


【摘要】:乙烯是工業(yè)生產(chǎn)聚合物和精細(xì)化學(xué)品的基礎(chǔ)原料,是衡量一個(gè)國家石化行業(yè)生產(chǎn)水平的重要標(biāo)志。工業(yè)上獲得乙烯主要通過石油熱裂解,熱裂解過程在產(chǎn)生乙烯的同時(shí)會(huì)產(chǎn)生0.1~1%的乙炔,而乙炔會(huì)導(dǎo)致乙烯聚合反應(yīng)催化劑不可逆失活。因此,乙炔含量必須降低到1 ppm以下才能符合乙烯聚合反應(yīng)的要求。工業(yè)上廣泛采用貴金屬Pd基催化劑催化乙炔選擇性加氫生成乙烯,該方法不僅可以脫除乙炔,而且能夠增加乙烯產(chǎn)率。但貴金屬Pd基催化劑存在生成乙烯選擇性低、成本高等問題,故尋求一種催化性能優(yōu)良的非貴金屬催化劑成為研究重點(diǎn)。對(duì)于非貴金屬Cu催化劑,盡管低溫下選擇性和活性較低,僅將其作為助劑添加到貴金屬催化劑中,但高溫下Cu催化劑卻是乙炔選擇性加氫反應(yīng)的活性組分。本文采用密度泛函理論計(jì)算方法,以Cu催化劑上乙炔選擇性加氫反應(yīng)為研究對(duì)象,系統(tǒng)研究了Cu催化劑價(jià)態(tài)、表面結(jié)構(gòu)和金屬摻雜對(duì)其催化性能(選擇性和活性)的影響。對(duì)于不同價(jià)態(tài)Cu催化劑,通過Cu、Cu2O和Cu O來反映Cu(0)、Cu(I)和Cu(II)催化劑;對(duì)于Cu的表面結(jié)構(gòu),通過Cu、Cu2O和Cu O的低指數(shù)表面(111)、(110)和(100)反映不同表面結(jié)構(gòu),同時(shí)考慮了這些表面的完美和缺陷表面;對(duì)于金屬摻雜Cu催化劑,考慮了Ni、Pd、Pt和Au四種金屬的摻雜。首先,研究了H2和H2O在不同表面結(jié)構(gòu)Cu O(111)表面上(完美、缺陷、預(yù)吸附氧)的吸附和解離,從而闡明cu催化劑表面結(jié)構(gòu)對(duì)乙炔選擇性加氫反應(yīng)關(guān)鍵起始步驟的影響。其次,詳細(xì)研究了三種不同價(jià)態(tài)cu催化劑cu(0)、cu(i)和cu(ii)的不同表面結(jié)構(gòu)(完美、缺陷)上乙炔選擇性加氫反應(yīng)來闡明cu催化劑價(jià)態(tài)和表面結(jié)構(gòu)對(duì)乙炔選擇性加氫反應(yīng)的影響。進(jìn)一步,研究了cu(0)/cu(i)雙組分催化劑上乙炔選擇性加氫來闡明cu催化劑組分對(duì)反應(yīng)的影響。最后,考慮了金屬ni、pd、pt和au摻雜改性的cu(0)和cu(i)催化劑上乙炔選擇性加氫反應(yīng)來闡明金屬摻雜對(duì)反應(yīng)的影響。通過上述研究進(jìn)而獲得cu催化劑價(jià)態(tài)、表面結(jié)構(gòu)、組分和金屬摻雜對(duì)乙炔選擇性加氫反應(yīng)生成乙烯的催化性能影響,為新型高效cu催化劑的設(shè)計(jì)提供重要理論依據(jù)。主要結(jié)論如下:1.cuo(111)表面結(jié)構(gòu)對(duì)h2和h2o的吸附與解離表現(xiàn)出結(jié)構(gòu)敏感性:a)h2在完美表面發(fā)生解離吸附,與表面晶格氧生成h2o,進(jìn)而形成氧缺陷表面;由于活性位表層氧原子的減少,h2在氧缺陷表面以分子吸附形式存在;h2在預(yù)吸附氧表面同樣為解離吸附;b)對(duì)于h2o的第一步解離反應(yīng)(h2o→oh+h),氧缺陷表面較完美表面呈現(xiàn)出強(qiáng)的催化活性,預(yù)吸附氧表面是動(dòng)力學(xué)和熱力學(xué)上最有利的表面。oh在完美表面較難解離生成h和o,在氧缺陷和預(yù)吸附氧表面上h2o解離的h可促進(jìn)oh解離。oh是h2o在不同cuo(111)表面解離的主要產(chǎn)物。2.cu催化劑價(jià)態(tài)、表面結(jié)構(gòu)影響乙炔選擇性加氫反應(yīng)體系中生成乙烯的選擇性和活性:a)cu催化劑對(duì)乙烯的選擇性和活性隨價(jià)態(tài)變化(cu(ii)→cu(i)→cu(0))而改變:cu(ii),cu(i)和cu(0)催化劑對(duì)乙烯的生成均呈現(xiàn)較好的選擇性和催化活性,其中cu(i)具有最高的乙烯選擇性,而cu(0)催化劑呈現(xiàn)最高的催化活性;b)對(duì)于cu(ii)催化劑,完美cuo表面呈現(xiàn)極低的乙烯選擇性;缺陷cuo(111)表面具有較高的乙烯選擇性和催化活性;c)對(duì)于cu(i)催化劑,完美cu2o表面對(duì)乙烯的生成表現(xiàn)出極低的選擇性;缺陷cu2o(111)和cu2o(110)表面對(duì)乙烯的生成表現(xiàn)出較高的選擇性和活性,二者選擇性幾乎相同,但cu2o(110)缺陷表面較cu2o(111)缺陷表面具有更高的催化活性;d)對(duì)于cu(0)催化劑,cu(111)和cu(211)表面對(duì)乙烯的生成表現(xiàn)出較高的選擇性和催化活性,其中cu(111)表面較cu(211)表面表現(xiàn)更優(yōu)的催化選擇性和活性。3.cu催化劑活性組分影響乙炔選擇性加氫反應(yīng)體系中生成乙烯的選擇性和活性:相對(duì)于單組分cu(0)和cu(i)催化劑,cu(0)/cu(i)雙組分催化劑因表現(xiàn)較低的催化活性,不能將其作為乙炔選擇性加氫反應(yīng)的理想催化劑;對(duì)于乙炔選擇性加氫反應(yīng)體系,cu催化劑應(yīng)僅存在單一價(jià)態(tài)組分。4.金屬ni、pd、pt和au摻雜改性影響cu催化劑上乙炔選擇性加氫反應(yīng)體系中生成乙烯的選擇性和活性:a)對(duì)于金屬ni、pd、pt和au摻雜的cu(111)表面,生成乙烯的選擇性排序:pdcu(111)cu(111)ptcu(111)nicu(111)aucu(111)pd(111);活性順序:pdcu(111)ptcu(111)pd(111)cu(111)nicu(111)aucu(111);pdcu(111)具有最高的乙烯選擇性和催化活性,并且遠(yuǎn)高于cu(111)和pd(111)表面上的催化性能;而Au Cu(111)表面表現(xiàn)最低的催化活性;b)Ni、Pd、Pt和Au金屬的摻雜改變了Cu(111)表面金屬原子的d帶中心,進(jìn)而影響乙炔選擇性加氫反應(yīng)的乙烯選擇性和催化活性,根據(jù)不同摻雜型表面以及Cu(111)、Pd(111)表面的選擇性和催化活性與金屬表層原子d帶中心所形成的近似火山型曲線,得出如下結(jié)論:較比其他表面,Au Cu(111)和Pd(111)分別具有最小和最大的表層金屬原子d帶中心,故而呈現(xiàn)最低的乙烯選擇性;PdCu(111)表層金屬原子的d帶中心位于中間位置,呈現(xiàn)最高的乙烯選擇性和催化活性;c)Pd金屬摻雜的缺陷Cu2O(111)和Cu2O(110)表面,因摻雜金屬Pd占據(jù)缺陷位而使得摻雜后的表面表現(xiàn)出與相應(yīng)完美表面相似的乙炔加氫特性,即Pd金屬摻雜的Cu(I)催化劑具有極低的乙烯選擇性和催化活性。5.Cu催化劑價(jià)態(tài)、表面結(jié)構(gòu)、組分和金屬摻雜四個(gè)主要結(jié)構(gòu)因素影響乙炔選擇性加氫反應(yīng)生成乙烯的催化性能,通過調(diào)變這些結(jié)構(gòu)因素進(jìn)而調(diào)控其催化性能,實(shí)現(xiàn)乙炔選擇性加氫反應(yīng)中高選擇性、高活性生成乙烯進(jìn)而脫除乙炔。本文的理論計(jì)算工作能夠?yàn)橐胰策x擇性加氫反應(yīng)體系中新型高效Cu催化劑的改性和設(shè)計(jì)提供基本理論線索和方法。
[Abstract]:Ethylene is the basic raw material for the production of polymer and fine chemicals in industry. It is an important symbol to measure the production level of a national petrochemical industry. The industrial ethylene is mainly pyrolytic by petroleum, and the process of pyrolysis produces ethylene at the same time, while acetylene will lead to the irreversible deactivation of the ethylene polymerization catalyst. Therefore, the content of acetylene must be reduced to less than 1 ppm to meet the requirements of ethylene polymerization. The noble metal Pd based catalyst is widely used in industry to catalyze ethene selective hydrogenation to generate ethylene. This method can not only remove acetylene, but also increase ethylene production. However, the Pd based catalyst for noble metals has low selectivity and cost of producing ethylene. In order to find a non noble metal catalyst with excellent catalytic performance, the non noble metal Cu catalyst is added to the noble metal catalyst, although the selectivity and activity are low at low temperature, but the Cu catalyst is the active component of the selective hydrogenation reaction of acetylene at high temperature. The degree functional theory calculation method is used to study the selective hydrogenation of acetylene on Cu catalyst. The effects of the valence state of Cu catalyst, surface structure and metal doping on its catalytic performance (selectivity and activity) are systematically studied. For different valence Cu catalysts, Cu (0), Cu (I) and Cu (II) catalysts are reflected by Cu, Cu2O and Cu O; The surface structure, through the low exponential surface (111), (110) and (100) of Cu, Cu2O and Cu O, reflects the perfect and defective surfaces of these surfaces; for metal doped Cu catalysts, the doping of four metals, Ni, Pd, Pt and Au, is considered. First, the H2 and H2O on the surface of the different surface structure Cu (111) surface (perfection, defect, preconditioning) The adsorption and dissociation of adsorbed oxygen is used to elucidate the influence of the surface structure of Cu catalyst on the critical initial step of acetylene selective hydrogenation. Secondly, the valence state and surface junction of Cu catalysts are clarified in detail with three different valence Cu catalysts Cu (0), Cu (I) and Cu (II) on the different surface structures (perfect, defects). Further, the effect of acetylene selective hydrogenation on Cu (0) /cu (I) dual component catalyst was studied to clarify the effect of Cu catalyst components on the reaction. Finally, the selective hydrogenation of acetylene on Ni, PD, Pt and Au doped modified Cu (0) and Cu (I) catalysts was considered to clarify the effect of metal doping on the reaction. The effect of the valence state of Cu catalyst, surface structure, composition and metal doping on the catalytic performance of ethylene in acetylene selective hydrogenation, which provides an important theoretical basis for the design of a new efficient Cu catalyst, is obtained through the above study. The main conclusions are as follows: the structure sensitivity of 1.cuo (111) surface structure to the adsorption and dissociation of H2 and H2O shows the structure sensitivity. Sensibility: a) H2 occurs dissociation adsorption on the perfect surface, forming H2O with surface lattice oxygen to form an oxygen defect surface; due to the decrease of oxygen atom on the surface of the active surface, H2 exists in the form of molecular adsorption on the surface of oxygen defect; H2 is also dissociated on the surface of the preadsorbed oxygen; b) the first step dissociation reaction (H2O to oh+h), the surface of oxygen defect on the H2O. The most favorable surface of the oxygen surface is the most favorable surface.Oh on the perfect surface, which is difficult to dissociate and produce H and O on the perfect surface. The h of the dissociation of H2O on the oxygen defect and the preadsorbed oxygen surface can promote the oh dissociation.Oh is the main product of H2O on the different CuO (111) surface, the valence state of the.2.cu catalyst, and the surface junction. The selectivity and activity of ethylene production in acetylene selective hydrogenation reaction system: the selectivity and activity of a) Cu catalyst changes with the change of valence state (Cu (II), Cu (I) to Cu (0)): Cu (II), Cu (I) and Cu (0) catalysts show good selectivity and catalytic activity to ethylene production. The Cu (0) catalyst presents the highest catalytic activity; b) for the Cu (II) catalyst, the perfect CuO surface presents extremely low ethylene selectivity; the defective CuO (111) surface has high ethylene selectivity and catalytic activity; c) shows extremely low selectivity for the formation of ethylene with the Cu (I) catalyst and the perfect Cu2O table; the defect Cu2O (111) and Cu2O (110) The surface has higher selectivity and activity for the generation of ethylene, and the selectivity of the two is almost the same, but the surface of the Cu2O (110) defect has higher catalytic activity than the Cu2O (111) defect surface; d) for Cu (0) catalyst, Cu (111) and Cu (211) surface showed high selectivity and catalytic activity to ethylene production, of which the Cu (111) surface was compared with Cu (21). 1) the selectivity and activity of the catalytic selectivity and active.3.cu catalyst on the selective hydrogenation of acetylene in the selective hydrogenation reaction system of acetylene can not be used as an acetylene selective hydrogenation reaction compared to the single component Cu (0) and Cu (I) catalysts, and the Cu (0) /cu (I) dual component catalyst has a lower catalytic activity. Ideal catalyst; for the acetylene selective hydrogenation reaction system, the Cu catalyst should have only a single valence group of.4. metal Ni, PD, Pt, and Au doping modification affecting the selectivity and activity of ethylene production in the acetylene selective hydrogenation reaction system on the Cu catalyst: a) for the selective discharge of the metal Ni, PD, Pt, and Au doped (111) surfaces. Order: PdCu (111) Cu (111) ptcu (111) NICU (111) aucu (111) Pd (111); active order: PdCu (111) ptcu (111) Pd (111) Cu (111) NICU (111) aucu (111)); The doping changes the center of d band of metal atoms on the surface of Cu (111), and then affects ethylene selectivity and catalytic activity of acetylene selective hydrogenation reaction. According to the approximate volcanic curve formed by the selectivity and catalytic activity of different doped surface and Cu (111), Pd (111) surface and the D zone of metal surface atoms, the following conclusions are drawn: Compared with other surfaces, Au Cu (111) and Pd (111) have the minimum and maximum surface metal atom d band center, thus presenting the lowest ethylene selectivity; PdCu (111) surface metal atom's d band center is located in the middle position, showing the highest ethylene selectivity and catalytic activity; c) Pd metal doped defects Cu2O (111) and Cu2O (110) surface, due to doping. The metal Pd occupies the defect position and makes the doped surface exhibit acetylene hydrogenation characteristics similar to the corresponding perfect surface. That is, the Pd metal doped Cu (I) catalyst has very low ethylene selectivity and catalytic activity.5.Cu catalyst valence state. The four main structural factors of surface structure, composition and metal doping influence the acetylene selective hydrogenation reaction. The catalytic performance of ethylene is generated by regulating these structural factors and regulating its catalytic performance, achieving high selectivity in acetylene selective hydrogenation, high activity to generate ethylene and then removing acetylene. The theoretical calculation of this paper can provide the basis for the modification and design of a new efficient Cu catalyst in the acetylene selective hydrogenation reaction system. The theoretical clues and methods.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O643.36;TQ221.211

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 楊天予;張敬暢;;裂解汽油一段選擇性加氫催化劑的加氫性能[J];石油化工;2009年06期

2 張光明;曹光強(qiáng);鞠學(xué)貞;;汽油選擇性加氫脫硫裝置的工藝選擇[J];浙江化工;2011年05期

3 崔玉珍;;豬油選擇性加氫工藝及其催化劑[J];精細(xì)化工信息;1987年02期

4 谷云格;楊基和;邱海輝;陳玉龍;;選擇性加氫-萃取組合工藝制環(huán)保芳烴填充油[J];石油煉制與化工;2014年04期

5 戴曉雁,朱家驊,吳平;C_(18)烯酸的等離子選擇性加氫[J];四川大學(xué)學(xué)報(bào)(工程科學(xué)版);2000年04期

6 李建衛(wèi),黃星亮;低溫選擇性加氫鎳催化劑的研究[J];石油化工;2001年09期

7 高步良,王迎春,張濂,袁渭康;輕烴選擇性加氫工藝操作條件的研究[J];煉油技術(shù)與工程;2004年12期

8 李赫;姚文君;黃德華;王宏軍;吳美巖;張峰;;全餾分裂解汽油選擇性加氫鈀催化劑[J];石化技術(shù)與應(yīng)用;2010年03期

9 ;信息與動(dòng)態(tài)[J];工業(yè)催化;2012年11期

10 張慎平,郝樹仁;烷基化原料選擇性加氫技術(shù)的工業(yè)應(yīng)用[J];齊魯石油化工;1999年03期

相關(guān)會(huì)議論文 前10條

1 溫廣明;李鳳鉉;徐偉池;李瑞峰;;裂解汽油一段加氫催化劑研究進(jìn)展[A];第八屆全國工業(yè)催化技術(shù)及應(yīng)用年會(huì)論文集[C];2011年

2 趙樂平;王艷濤;劉百強(qiáng);;FCC汽油選擇性加氫脫硫工藝優(yōu)化研究[A];第六屆全國工業(yè)催化技術(shù)及應(yīng)用年會(huì)論文集[C];2009年

3 張燕;黃星亮;周志遠(yuǎn);李健;;選擇性加氫鎳催化劑硫中毒再生研究[A];第十一屆全國青年催化學(xué)術(shù)會(huì)議論文集(下)[C];2007年

4 鞏玉同;王勇;;一種新的催化喹啉選擇性加氫的高效催化劑[A];中國化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第1分會(huì)場(chǎng)摘要集[C];2012年

5 殷文奎;商紅巖;李宇靜;鐘賢斌;劉晨光;;碳納米管負(fù)載的催化裂化汽油選擇性加氫脫硫催化劑的研究[A];中國化工學(xué)會(huì)2005年石油化工學(xué)術(shù)年會(huì)論文集[C];2005年

6 柯明;賀輝宗;宋昭崢;蔣慶哲;;汽油選擇性加氫脫硫催化劑的改性[A];中國化工學(xué)會(huì)2008年石油化工學(xué)術(shù)年會(huì)暨北京化工研究院建院50周年學(xué)術(shù)報(bào)告會(huì)論文集[C];2008年

7 曾佑富;晁會(huì)霞;閆桂玲;;鎳基裂解汽油一段加氫催化劑性能評(píng)價(jià)[A];第六屆全國工業(yè)催化技術(shù)及應(yīng)用年會(huì)論文集[C];2009年

8 南軍;李梅;劉晨光;王繼鋒;;連續(xù)重整汽油選擇性加氫脫烯烴用貴金屬催化劑的研究[A];第2屆全國工業(yè)催化技術(shù)及應(yīng)用年會(huì)論文集[C];2005年

9 謝冠朱;劉西敬;魯繼青;李小年;羅孟飛;;Au/TiO_2催化巴豆醛選擇性加氫[A];第十一屆全國青年催化學(xué)術(shù)會(huì)議論文集(下)[C];2007年

10 鄧凡鋒;;FCC選擇性加氫脫硫工藝的改進(jìn)思路[A];中國化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第5分會(huì)場(chǎng)摘要集[C];2012年

相關(guān)重要報(bào)紙文章 前1條

1 解小如 張利峗;?破瓦x擇性加氫裝置投產(chǎn)[N];中國化工報(bào);2009年

相關(guān)博士學(xué)位論文 前10條

1 李翼;苯酚選擇性加氫催化體系的設(shè)計(jì)及研究[D];浙江大學(xué);2015年

2 王東;Pt(Pd)-Mo_2N(WN)催化選擇性加氫的協(xié)同效應(yīng)研究[D];黑龍江大學(xué);2016年

3 魏中哲;鈷基復(fù)合材料的設(shè)計(jì)及其在芳硝基化合物選擇性加氫中的應(yīng)用[D];浙江大學(xué);2017年

4 張銘;乙炔選擇性加氫的分子模擬研究[D];天津大學(xué);2009年

5 陸海孟;長(zhǎng)鏈正構(gòu)雙烯與乙炔選擇性加氫負(fù)載型納米鈀金屬催化劑的研究[D];南京大學(xué);2015年

6 南軍;重整汽油選擇性加氫Pd基催化劑的制備、表征與加氫性能[D];中國石油大學(xué);2007年

7 付慶濤;磁性催化劑與磁穩(wěn)定床中苯選擇性加氫研究[D];中國石油大學(xué);2011年

8 孫昱;氯代硝基苯選擇性加氫制備氯代苯胺的研究[D];南京理工大學(xué);2007年

9 謝冠群;鈰基氧化物負(fù)載Au與Pt催化巴豆醛選擇性加氫研究[D];浙江工業(yè)大學(xué);2009年

10 高爽;過渡金屬及貴金屬催化劑上多相選擇加氫反應(yīng)的研究[D];吉林大學(xué);2015年

相關(guān)碩士學(xué)位論文 前10條

1 吳少偉;石墨烯負(fù)載銥、金催化對(duì)氯硝基苯選擇性加氫的研究[D];大連理工大學(xué);2015年

2 肖威茂;苯酚選擇性加氫過程的研究[D];湘潭大學(xué);2015年

3 張聰;苯酚選擇性加氫制備環(huán)己酮的研究[D];青島科技大學(xué);2015年

4 鐘澤欽;BN負(fù)載貴金屬催化肉桂醛選擇性加氫反應(yīng)研究[D];廣東工業(yè)大學(xué);2016年

5 江和展;新型氮雜碳材料的制備及其在選擇性加氫反應(yīng)中的應(yīng)用研究[D];湖北大學(xué);2016年

6 鄒容;苯酚及苯選擇加氫反應(yīng)的研究[D];湖南師范大學(xué);2016年

7 周俊瑤;Co_xSn_y金屬間化合物的制備及其對(duì)檸檬醛選擇性加氫的催化性能研究[D];北京化工大學(xué);2016年

8 陳宇迪;鎳基金屬間化合物的制備及其催化苯乙炔選擇性加氫性能研究[D];北京化工大學(xué);2016年

9 吳文溢;乙炔選擇性加氫的分子模擬研究[D];北京化工大學(xué);2015年

10 郭曉燕;對(duì)苯二甲酸二甲酯和4-氯-3,5-二硝基苯甲酸異丁酯選擇性加氫的研究[D];大連理工大學(xué);2015年



本文編號(hào):1924782

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxue/1924782.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶096d6***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com