基于聚離子液體固載手性催化劑納米粒子的合成及其在不對稱合成中的應用
發(fā)布時間:2018-05-21 04:17
本文選題:手性催化劑 + 聚離子液體; 參考:《河南師范大學》2017年碩士論文
【摘要】:為了得到較純的手性化合物,人們常常采用手性催化的辦法,但是,由于目前市場上的手性催化劑都比較昂貴且當它與反應底物混合時很難分離,導致催化劑難以重復利用,通過催化劑固載的方法可以有效解決催化劑分離回收的問題,但同樣面臨著非均相體系催化效率低、很難實現在水中綠色催化等問題。本文中,我們提出了一種基于聚離子液體負載手性催化劑納米粒子的制備方法。首先,通過自由基聚合的方法制備具有-COOH的手性無規(guī)共聚物,然后在堿性有機溶劑中與咪唑基聚合物離子液體通過原位離子絡合作用生成交聯(lián)聚離子液體復合物納米粒子。該納米粒子作為催化劑能夠有效地催化直接不對稱Aldol反應,biginelli反應等多組分反應中。同時為了探究聚離子液體在催化反應中所起的作用,我們制備了一系列具有不同表面結構的納米粒子催化劑,進而研究了催化劑的催化活性、對映選擇性以及重復利用性,具體的內容如下:一、具有-COOH的負載L-脯氨酰胺小分子催化劑共聚物的制備我們利用N-對乙烯基苯磺;-L-脯氨酰胺、甲基丙烯酸,以二甲基亞砜為溶劑、偶氮二異丁腈作為引發(fā)劑采用自由基聚合的方法成功制備了具有-COOH的Poly(MAA-co-Prolinamide)共聚物。然后采用~1HNMR、FT-IR對共聚物的結構進行了表征、采用GPC對共聚物的分子量及其分布進行了表征。二、基于聚離子液體固載L-脯氨酰胺手性催化劑納米粒子的制備我們制備出了具有不同反離子的聚離子液體,隨后將聚離子液體和具有-COOH的無規(guī)共聚物溶解在溶劑形成均相溶液,此時共聚物鏈中的-COOH以非解離的形式大量存在,當它們處在乙醇氨的堿性溶液中時,兩者之間通過較強的離子間相互作用立即形成不溶的聚離子液體復合物納米粒子。通過調控聚離子液體與共聚物之間的比例合成出了一系列具有不同殼層結構的納米粒子,并通過傅里葉變換紅外、靜態(tài)接觸角、透射電鏡、光電子能譜、元素分析等對納米粒子的形貌、表面結構以及元素組成進行了詳細的表征。三、聚離子液體復合物納米粒子在不對稱合成反應中的應用為了研究制備的納米粒子的催化性能,我們將其應用了在三個不對稱合成反應中:直接不對稱Aldol反應、簡單的三組分(Biginelli反應)、復雜的三組分反應:1、對硝基苯甲醛、丙酮作為Aldol反應的主要底物,將上述制備的納米粒子作為催化劑應用在直接不對稱Aldol反應中,研究發(fā)現相比于有機小分子催化劑、共聚物,我們所合成的納米粒子表現出較高的催化特性,尤其是在純水體系中,催化活性更高,8 h內轉化率能達到91%,ee值高達91%。2、脲,苯甲醛,乙酰乙酸乙酯作為Biginelli反應的底物,將上述制備的納米粒子作為催化劑,應用在Biginelli反應中,研究了催化劑在不同溶劑:THF、CH2Cl2、CH_3CH_2OH、Toluene、H2O中的催化性能。研究發(fā)現,相比于其它有機溶劑,在純水體系中的催化性能尤為突出,轉化率達到80%,ee值達到40%,而在其它有機溶劑中的轉化率僅僅只有35%,ee值有29%,甚至更低。3、以取代苯甲醛、2-羥基-1,4-萘醌、3-氨基-5-甲基吡唑作為三組分反應的主要底物,將上述制備的納米粒子作為催化劑分別在不同的溶劑:THF、CH2Cl2、CH_3CH_2OH、Toluene、H2O中進行催化反應,研究發(fā)現,相比于其它有機溶劑,在純水體系中的催化活性更高,其在水中的轉化率能達到99%,ee值可達到98%。4、我們將回收的納米粒子在直接不對稱Aldol反應中和三組分反應中,經過5次反復循環(huán)催化后,催化劑的催化活性和立體選擇性沒有明顯減弱,且催化劑的回收率可以達到98%以上。
[Abstract]:In order to obtain more pure chiral compounds, chiral catalysis are often used. However, because the chiral catalysts in the market are very expensive and difficult to separate when mixed with the reaction substrates, the catalyst can not be reused. The catalyst separation and recovery can be effectively solved by the method of catalyst immobilization. But also faced with the low catalytic efficiency of heterogeneous systems, it is difficult to realize the problem of green catalysis in water. In this paper, we proposed a preparation method based on the polyionic liquid supported chiral catalyst nanoparticles. First, the chiral random copolymer with -COOH was prepared by free radical polymerization, and then in the alkaline organic solvent. The imidazolic polymer ionic liquid is used to produce crosslinked polyionic Liquid Complex Nanoparticles by in situ ion complexation. As a catalyst, the nanoparticles can catalyze the direct asymmetric Aldol reaction, Biginelli reaction and other multi component reactions, and to explore the role of the polyionic liquid in the catalytic reaction. A series of nanoparticle catalysts with different surface structures were prepared, and the catalytic activity, enantioselectivity and reutilization of the catalyst were studied. Firstly, the preparation of the -COOH prolyl small molecular catalyst copolymer with the load L- was prepared by N- for the vinyl benzensulfonyl -L- prolyl Methacrylic acid, using two methyl sulfoxide as solvent and azo two isobutyl nitrile as initiator, the -COOH Poly (MAA-co-Prolinamide) copolymer was prepared successfully by free radical polymerization. Then ~1HNMR, FT-IR was used to characterize the structure of the copolymer. The molecular weight and distribution of the copolymer were characterized by GPC. Two, Based on the preparation of polyionic liquid supported L- prolyl chiral catalyst nanoparticles, we prepared polyionic liquids with different reverse ions. Then, the polyionic liquids and the random copolymers with -COOH were dissolved in the solvent to form the homogeneous solution. At this time, the -COOH in the copolymer chain existed in the form of non dissociation. In the alkaline solution of ethanol ammonia, the insoluble polyionic liquid composite nanoparticles are formed by the interaction of strong ion INTERIONS. A series of nano particles with different shell structures are synthesized by regulating the proportion between the polymer and the polymer, and the static connection is carried out by Fourier transform infrared (FTIR). Antennae, transmission electron microscopy, photoelectron spectroscopy, element analysis, and so on, the morphology, surface structure and element composition of the nanoparticles were characterized in detail. Three, the application of polyionic liquid composite nanoparticles in the asymmetric synthesis reaction was to study the catalytic properties of the prepared nanoparticles. We applied it to three asymmetric compounds. In the reaction: direct asymmetric Aldol reaction, simple three components (Biginelli reaction), complex three component reactions: 1, nitrobenzaldehyde, acetone as the main substrate for Aldol reaction, the nanoparticles prepared above are used as a catalyst in the direct asymmetric Aldol reaction, and the study found that the copolymerization was compared with the organic small molecular catalyst. The synthesized nanoparticles show high catalytic properties, especially in the pure water system, the catalytic activity is higher, the conversion rate of 8 h can reach 91%, the EE value is up to 91%.2, urea, benzaldehyde, ethyl acetoacetate as the substrate of the Biginelli reaction, and the nanoparticles prepared above are used as the catalyst in the Biginelli reaction. The catalytic performance of the catalyst in different solvents: THF, CH2Cl2, CH_3CH_2OH, Toluene, H2O has been studied. It is found that the catalytic performance in the pure water system is particularly prominent compared with other organic solvents, the conversion rate is 80%, the EE value reaches 40%, while the conversion rate in other organic solvents is only 35%, and the EE value is 29% or even lower.3 to replace benzene. Formaldehyde, 2- hydroxyl -1,4- naphthone and 3- amino -5- methyl pyrazole are the main substrates of the three component reactions. The catalysts prepared above are catalyzed in different solvents: THF, CH2Cl2, CH_3CH_2OH, Toluene, and H2O. The catalytic activity of the prepared nanoparticles in the pure water system is higher than that of other organic solvents, and it is found to be more active in the pure water system. The conversion rate of the water can reach 99% and the EE value can reach 98%.4. The recovered nanoparticles are in the direct asymmetric Aldol reaction and the three component reaction. After 5 repeated cycles, the catalytic activity and the stereoselectivity of the catalyst are not obviously weakened, and the recovery rate of the catalyst can be over 98%.
【學位授予單位】:河南師范大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O643.36;TB383.1
【參考文獻】
相關期刊論文 前5條
1 孫愛軍;張金龍;孟洪;李春喜;;負載型離子液體氣相催化合成1-氯丁烷[J];北京化工大學學報(自然科學版);2009年06期
2 劉虎;朱嚴瑾;易昌鳳;徐祖順;;樹枝狀大分子/聚(N-異丙基丙烯酰胺)納米粒子的制備[J];過程工程學報;2008年06期
3 李雪輝;李榕;陳學偉;王芙蓉;王樂夫;;堿性離子液體的研究進展[J];工業(yè)催化;2007年05期
4 周智明;姜飛;莫凡洋;;離子液體中手性催化劑回收研究[J];化學進展;2007年01期
5 鄔勝德;周昌友;劉桂蘭;鄧潤華;蔣耀忠;;固-液相轉移催化合成 Ⅴ.醛亞胺的Michael加成和羰基加成反應合成α-氨基酸[J];化學學報;1987年10期
相關碩士學位論文 前1條
1 崔宏琴;含手性聯(lián)萘側基乙烯基單體的合成及結構表征[D];湖北科技學院;2016年
,本文編號:1917708
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1917708.html
教材專著