天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 化學(xué)論文 >

基于離子自組裝構(gòu)建的超分子納米材料及其功能

發(fā)布時(shí)間:2018-05-19 23:26

  本文選題:超分子 + 離子自組裝。 參考:《山東大學(xué)》2016年碩士論文


【摘要】:超分子化學(xué)帶動(dòng)了納米材料、有機(jī)凝膠、有機(jī)-無機(jī)雜化材料和生物分子材料等新材料的發(fā)展。超分子自組裝策略被廣泛應(yīng)用于制備各種功能性材料。作為超分子自組裝方法之一,離子自組裝(ISA)為將簡單的構(gòu)筑單元組裝成規(guī)則的(well-defined)、離散的(discrete)超分子結(jié)構(gòu)提供了一條有效且通用的路線。這種基于靜電作用的策略由于具有普適性、簡單和便宜等優(yōu)點(diǎn)而引起了研究者的關(guān)注。在本文中,我們合成了多種表面活性離子液體,并選擇合適的帶相反電荷的分子,應(yīng)用離子自組裝策略制備了超分子材料。論文的內(nèi)容主要分為以下四個(gè)部分:第一章介紹了與本論文密切相關(guān)的基礎(chǔ)知識以及近幾年國內(nèi)外在采用離子自組裝策略制備超分子納米材料領(lǐng)域的研究進(jìn)展,并提出了本論文的立題依據(jù)和研究思路。第二章采用表面活性劑與有機(jī)小分子進(jìn)行離子自組裝制備了超分子納米材料。(1)基于離子自組裝策略,使用羧基功能化表面活性離子液體—N-癸基-N’-羧甲基咪唑溴([N-C10, N'-COOH-Im]Br)與剛果紅(CR)染料分子構(gòu)建了有強(qiáng)熒光性質(zhì)且同時(shí)具有pH和溫度雙重響應(yīng)的超分子材料。發(fā)現(xiàn)CR/[N-C10,N'-COOH-Im]Br (摩爾比為1:2)體系在pH為3.2的水溶液中組裝成1D的細(xì)長纖維。值得注意的是當(dāng)pH繼續(xù)增大至9.0時(shí),1D纖維逐漸變成2D平面結(jié)構(gòu)(如竹葉狀結(jié)構(gòu)、梭形、圓盤狀和矩形狀結(jié)構(gòu))。尤為有趣的是,形成的1D和2D超分子材料之間的相互轉(zhuǎn)變是可逆的。同時(shí),我們也發(fā)現(xiàn)隨著溫度的升高,納米纖維會逐漸聚集成纖維束。此外,當(dāng)pH在3.2和9.0之間變化時(shí),制備的1D和2D超分子材料具有熒光開關(guān)的性質(zhì)。靜電作用、疏水作用和π-π堆積被證明是形成CR/[N-C10, N'-COOH-Im]Br超分子材料的主要驅(qū)動(dòng)力,Gauss優(yōu)化結(jié)果表明剛果紅分子的二聚體之間的π-π堆積也起著重要的作用。(2)利用成本較低廉的商用表面活性劑—二(2-乙基己基)磺基琥珀酸酯鈉(NaAOT)與染料分子羅丹明6G通過離子自組裝制備了長度達(dá)到2厘米的纖維。這種纖維展現(xiàn)了很好的機(jī)械強(qiáng)度和良好的柔韌性,同時(shí)具有強(qiáng)熒光性質(zhì)和有機(jī)半導(dǎo)體性質(zhì)。在超分子材料的形成過程中出現(xiàn)了一個(gè)非常罕見的現(xiàn)象,納米顆粒首先鏈狀生長,然后再折疊聚集成宏觀纖維。在此基礎(chǔ)上探究了宏觀纖維的形成機(jī)理。(3)基于超分子自組裝策略,偶氮苯羧酸在pH=3.2的水溶液中能夠自組裝形成納米棒,當(dāng)pH升高到6.5時(shí),形成多邊形材料;在紫外光照下納米棒完全消失,形成納米球。僅通過改變基于偶氮苯羧酸分子與模板分子(β-環(huán)糊精;[N-C, N'-COOH-Im]Br,n=10,12,14;CTAB)之間的弱相互作用,在表面活性劑的輔助作用下能夠調(diào)控形成鼠尾草(salvia officinalis)狀纖維、細(xì)長纖維,納米顆粒和球狀顆粒的聚集體等形狀的超分子材料。其中,將[N-C10, N'-COOH-Im]Br水溶液加入到β-CD/偶氮羧酸鈉復(fù)合物體系中,得到的鼠尾草(salvia officinalis)狀材料極其罕見。循環(huán)伏安實(shí)驗(yàn)和密度泛函理論(DFT)優(yōu)化計(jì)算表明,這種材料具有優(yōu)良的光電性能,在形成光電器件方面具有潛在的應(yīng)用價(jià)值。第三章 通過表面活性離子液體與多金屬氧化簇(POM)進(jìn)行離子自組裝構(gòu)筑了超分子納米材料,并研究了其在催化和生物方面的應(yīng)用。(1)通過離子自組裝策略,在水溶液中將帶有相反電荷的表面活性離子液體([N-C10, N'-COOH-Im]Br)包覆在K eggin型多金屬氧化簇(磷鎢酸)的表面,形成了具有pH響應(yīng)、有良好的電化學(xué)性質(zhì)和催化性質(zhì)的有機(jī)-無機(jī)雜化材料。這種基于POM的雜化材料在降解染料分子方面表現(xiàn)出了良好的催化活性。尤其有趣的是由于表面活性離子液體與多金屬氧化簇之間存在著靜電作用,pH的變化能夠驅(qū)動(dòng)雜化材料的解組裝與再組裝,同時(shí)能夠使得雜化材料的催化活性重新恢復(fù)。更有意義的是相比于傳統(tǒng)的催化劑,這種新型POM/[N-C10, N'-COOH-Im]Br催化劑即使在黑暗的條件下也能催化反應(yīng),同時(shí)這種具有pH響應(yīng)的催化劑能夠解決異相催化劑中普遍存在的催化劑中毒問題。(2)在水溶液中,通過離子自組裝制備了表面活性離子液體([N-C12, N'-COOH-Im]Br)/稀土包覆的多金屬氧化簇Na9EuWio036-32H20 (Eu-POM)超分子納米球。發(fā)現(xiàn)這些單分散性的超分子球具有pH調(diào)控的可逆自組裝性質(zhì)和優(yōu)良的光致發(fā)光性質(zhì)。有趣的是,制備的[N-C12,N'-COOH-Im]Br/Eu-POM超分子納米球?qū)е铝薊u-POM 熒光性質(zhì)的猝滅,這種猝滅機(jī)制是因?yàn)镋u-POM與表面活性離子液體之間存在的氫鍵阻斷了POM中d1電子的躍遷。然而,隨著pH的升高,[N-C12, N'-COOH-Im]Br去質(zhì)子化,形成的超分子納米球解組裝,使得材料的熒光光學(xué)性質(zhì)完全恢復(fù);趐H驅(qū)動(dòng)超分子球的解組裝與再組裝以及具有濁度和熒光性質(zhì)的雙重檢測信號特征,我們將其應(yīng)用于生物分子脲酶和重金屬離子的檢測中。此外,甲基橙(MO)作為客體分子很容易被包覆到超分子球中,通過外界環(huán)境的刺激響應(yīng)去控制超分子球的解組裝,能夠使得被包覆在其中的客體分子被釋放出來。這表明刺激響應(yīng)型的Eu-POM/[N-C12, N'-COOH-Im]Br超分子材料在藥物緩釋方面也具有潛在的應(yīng)用價(jià)值。(3)在水溶液中,制備了具有超長熒光壽命(3.758 ms)和高量子產(chǎn)率(25.17%)的稀土包覆的多金屬氧化簇(Eu-POM)/Gemini型表面活性劑(1,2-雙(十六烷基咪唑)-溴乙烷,[C16-2-C16im]Br2)雜化球。發(fā)現(xiàn)這種雜化材料具有良好的生物相容性,能夠在生物細(xì)胞中作為生物探針應(yīng)用于生物成像。第四章將多金屬氧化簇(POM)和十六烷基三甲基溴化銨(CTAB)通過離子自組裝制備了具有兩親性質(zhì)的超分子復(fù)合物。然后利用兩親性超分子復(fù)合物和溫度敏感型離子液體——三氟乙酸四丁基鱗([P4444][CF3COO])構(gòu)建了一個(gè)新型的催化體系。[P4444][CF3COO]在25℃時(shí)能夠在水中形成類微乳液,兩親性超分子復(fù)合物能夠溶解到類微乳液的液滴中。當(dāng)溫度升高至35℃時(shí),離子液體和水發(fā)生相分離,超分子復(fù)合物會隨著離子液體與水的分離而留在離子液體相中。我們將這種溫度驅(qū)動(dòng)的異相分離體系應(yīng)用到了催化方面。在25℃下經(jīng)紫外光照(365 nm)照射30 min后,發(fā)現(xiàn)POM/CTAB超分子復(fù)合物能夠催化重鉻酸鉀,將Cr(Ⅵ)變成Cr(Ⅲ)。當(dāng)升溫至35℃時(shí),溶有超分子復(fù)合物的離子液體相與Cr(III)水溶液發(fā)生相分離。POM/CTAB-[P4444][CF3COO]催化體系在經(jīng)多次循環(huán)使用之后仍保持良好的催化活性。因此這種新型催化體系在克服異相催化劑的中毒現(xiàn)象方面具有良好的應(yīng)用前景。
[Abstract]:Supramolecular chemistry has led to the development of nanomaterials, organogels, organic-inorganic hybrid materials and biomaterials. Supramolecular self-assembly strategies are widely used in the preparation of various functional materials. As one of the supermolecule self-assembly methods, ISA (well-def) is used as a rule to assemble simple construction units (well-def Ined), the discrete (discrete) supramolecular structure provides an effective and universal route. The strategy based on the electrostatic action has attracted the attention of researchers because of its universality, simplicity and simplicity. In this paper, we synthesized a variety of surface active ionic liquids and selected appropriate molecules with opposite charges. The supramolecular materials are prepared by the ion self-assembly strategy. The main contents of this paper are divided into four parts: the first chapter introduces the basic knowledge which is closely related to this paper and the research progress in the field of using the ion self-assembly strategy to prepare the supramolecular nanomaterials at home and abroad in recent years, and puts forward the basis and research of this paper. The second chapter uses the surface active agent and the organic small molecules to prepare the supramolecular nanomaterials. (1) based on the ion self-assembly strategy, the carboxyl functionalized surface active ionic liquids - N- decyl -N '- carboxymethyl imidazolium bromide ([N-C10, N'-COOH-Im]Br) and the Congo red (CR) dyes - have been constructed with strong fluorescence properties and CR/[N-C10, N'-COOH-Im]Br (mole ratio is 1:2) system is assembled into slender fibers of 1D in pH 3.2 water solution. It is worth noting that when pH continues to increase to 9, 1D fiber gradually becomes a 2D plane structure (such as bamboo, shuttle, disc and rectangle). It is particularly interesting that the transformation between the 1D and 2D supramolecular materials is reversible. At the same time, we also find that as the temperature increases, the nanofibers will gradually integrate into the fiber bundles. In addition, when pH changes between 3.2 and 9, the prepared 1D and 2D supramolecular materials have the properties of the fluorescent switches. Electrostatic action, hydrophobicity and PI. The pion accumulation is proved to be the main driving force for forming CR/[N-C10, N'-COOH-Im]Br supramolecular materials. Gauss optimization results show that the pion pion accumulation between the two polymers of the Congo red molecules also plays an important role. (2) use of the cheaper commercial surface active agent - two (2- ethyl hexyl) sulfonylsuccinate sodium (NaAOT) and dye molecule Luo Dan 6G was prepared by ion self-assembly to produce a fiber with a length of 2 centimeters. The fibers exhibit good mechanical strength and good flexibility, with strong fluorescence and organic semiconductors. A very rare phenomenon occurs during the formation of supramolecular materials. The nanocrystalline particles are first linked and then refolded. On the basis of this, the formation mechanism of macro fiber is explored. (3) based on the supramolecular self-assembly strategy, azobenzene carboxylic acid can form a nanorod in the aqueous solution of pH=3.2 and form a polygon material when the pH rises to 6.5; the nanospheres are completely disappeared under ultraviolet light. The weak interaction between azobenzene carboxylic acid molecules and template molecules (beta cyclodextrin; [N-C, N'-COOH-Im]Br, n=10,12,14; CTAB) can be used to regulate the formation of sage (Salvia officinalis) like fibers, slender fibers, nanoparticles and spherical particles in the form of supermolecular materials. [N-C10, N'-COOH-Im]Br aqueous solution is added to the sodium azo carboxylate complex system of beta -CD/. The obtained sage (Salvia officinalis) like material is extremely rare. Cyclic voltammetry and density functional theory (DFT) optimization results show that this material has excellent photoelectric energy and has potential application value in the formation of optoelectronic devices. In the third chapter, the supramolecular nanomaterials are constructed by self assembly of surface active ionic liquids and polymetallic oxide clusters (POM), and their applications in catalytic and biological aspects are studied. (1) the surface active ionic liquids ([N-C10, N'-COOH-Im]Br) with opposite charges (N'-COOH-Im]Br) are coated in K egg in aqueous solution by the ion self assembly strategy. The surface of in type polymetallic oxide cluster (phosphotungstic acid) has formed an organic inorganic hybrid material with pH response, good electrochemical properties and catalytic properties. This hybrid material based on POM shows good catalytic activity in the degradation of dye molecules. It is especially interesting that the surface active ionic liquid and polymetallic oxide cluster are the most interesting. There is an electrostatic interaction between them. The change of pH can drive the disassembly and reassembly of the hybrid materials, and the catalytic activity of the hybrid materials can be restored. It is more significant that the new type of POM/[N-C10, the N'-COOH-Im]Br catalyst, can catalyze the reaction even in the dark conditions. The catalysts with pH response can solve the ubiquitous catalyst poisoning problems in heterogeneous catalysts. (2) in aqueous solution, surface active ionic liquids ([N-C12, N'-COOH-Im]Br) / Rare Earth Coated polymetallic oxide cluster Na9EuWio036-32H20 (Eu-POM) supermolecule nanospheres are prepared by self assembly in aqueous solution. The subspheres have pH controlled reversible self assembly properties and excellent photoluminescence properties. Interestingly, the prepared [N-C12, N'-COOH-Im]Br/Eu-POM supramolecular nanospheres cause the quenching of Eu-POM fluorescence properties. This quenching mechanism is because the hydrogen bonds between Eu-POM and surface active ionic liquids block the transition of D1 electrons in POM. With the increase of pH, [N-C12 and N'-COOH-Im]Br are protonated and formed by supermolecular nanospheres, which make the fluorescence optical properties of the material completely restored. Based on the dual detection signal characteristics of the pH driven supramolecular spheres and the turbidity and fluorescence properties, we apply it to the urease and heavy gold of the biomolecules. In addition, the methyl orange (MO) is easily encapsulated into a supramolecular sphere as an guest molecule. It can be controlled by the response of the external environment to control the assembly of the supramolecular sphere. It can be released by the guest molecules coated in it. This indicates that the Eu-POM/[N-C12, N'-COOH-Im]Br supramolecular material that stimulates the response to the response type is in the form of supramolecular molecules. Drug release also has potential application value. (3) in aqueous solution, a rare earth coated polymetallic oxide cluster (Eu-POM) /Gemini surfactant (1,2- double (sixteen alkyl imidazole) bromo ethane, [C16-2-C16im]Br2) hybrid spheres with a long fluorescence lifetime (3.758 MS) and a high quantum yield (25.17%) was prepared. In the fourth chapter, polymetallic oxide clusters (POM) and sixteen alkyl three methyl ammonium bromide (CTAB) are prepared by self assembly of polymetallic oxide clusters (POM) and sixteen alkyl groups, and then use two amphiphilic supramolecular complexes and thermosensitive ions. Liquid - three FLUOROACETIC acid four butyl scale ([P4444][CF3COO]) constructed a new catalytic system,.[P4444][CF3COO], to form a microemulsion in water at 25 C. Two Pro supramolecular complexes can be dissolved in a droplet of a microemulsion. When the temperature rises to 35, the separation of the liquid from the water and the supramolecular complex can be found. With the separation of the ionic liquid and water in the ionic liquid phase, we applied the temperature driven heterogenous separation system to the catalytic aspect. After irradiation of 30 min by ultraviolet light (365 nm) at 25 C, it was found that the POM/CTA B supermolecule complex could catalyze potassium dichromate and transform Cr (VI) into Cr (III). The ionic liquid phase of the subcomplex and the Cr (III) aqueous solution phase separation.POM/CTAB-[P4444][CF3COO] catalytic system still maintains good catalytic activity after repeated use. Therefore, this new catalytic system has a good application prospect in overcoming the toxic phenomenon of heterogeneous catalyst.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:O641.3;TB383.1

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 郭劍峰;;衛(wèi)敏:無處不在的超分子[J];科技潮;2009年05期

2 陳強(qiáng),譚民裕,劉偉生;超分子中分子間弱相互作用力的研究方法概述[J];化學(xué)通報(bào);2001年04期

3 李長順;;超分子材料研究進(jìn)展[J];廣東化工;2006年09期

4 詹海鶯;劉海洋;胡軍;江煥峰;;卟啉超分子的組裝合成及其應(yīng)用新進(jìn)展[J];中國科學(xué)(B輯:化學(xué));2009年03期

5 Э.П.Высоцкая;倪宜平;;聚酯長絲的染料得色量與其超分子結(jié)構(gòu)的關(guān)系[J];國外紡織技術(shù)(化纖、染整、三廢治理分冊);1980年12期

6 咸文淑;纖維的超分子結(jié)構(gòu)與力學(xué)性質(zhì)[J];合成纖維;1981年04期

7 劉漢興,蘭興文;高模量維綸濕法長絲超分子結(jié)構(gòu)和力學(xué)性能[J];合成纖維;1981年06期

8 許長安;;煤的超分子結(jié)構(gòu)與煤塵致病作用的特點(diǎn)[J];鐵道勞動(dòng)衛(wèi)生通訊;1983年01期

9 梁伯潤;;熱致性羥丙基纖維素液晶的超分子結(jié)構(gòu)[J];中國紡織大學(xué)學(xué)報(bào);1990年03期

10 周成飛;醫(yī)用超分子材料[J];現(xiàn)代化工;1992年05期

相關(guān)會議論文 前10條

1 蘇成勇;;金屬-有機(jī)超分子與環(huán)境能源材料[A];2012年中西部地區(qū)無機(jī)化學(xué)化工學(xué)術(shù)研討會論文集[C];2012年

2 蘇成勇;;金屬-有機(jī)超分子結(jié)構(gòu)、組裝與應(yīng)用[A];第六屆全國物理無機(jī)化學(xué)會議論文摘要集[C];2012年

3 蘇成勇;;金屬-有機(jī)超分子材料與能源環(huán)境[A];第十二屆固態(tài)化學(xué)與無機(jī)合成學(xué)術(shù)會議論文摘要集[C];2012年

4 ;超分子結(jié)構(gòu)與材料國家重點(diǎn)實(shí)驗(yàn)室[A];中國化學(xué)會第十四屆膠體與界面化學(xué)會議論文摘要集-第6分會:膠體與界面化學(xué)技術(shù)、應(yīng)用與產(chǎn)品[C];2013年

5 ;超分子結(jié)構(gòu)與材料國家重點(diǎn)實(shí)驗(yàn)室[A];中國化學(xué)會第十四屆膠體與界面化學(xué)會議論文摘要集-第4分會:膠體分散與多組分體系[C];2013年

6 王憲龍;梁昌萍;周成合;;磺胺雙三唑新化合物的設(shè)計(jì)合成及其銀超分子抗菌藥物研究[A];大環(huán)化學(xué)和超分子化學(xué)的新發(fā)展——當(dāng)前學(xué)科交叉的一個(gè)重要橋梁——中國化學(xué)會全國第十五屆大環(huán)化學(xué)暨第七屆超分子化學(xué)學(xué)術(shù)討論會論文摘要集[C];2010年

7 張鋒;陳慧蘭;;芳香碘基在新型配位超分子構(gòu)筑中的應(yīng)用[A];大環(huán)化學(xué)和超分子化學(xué)研究進(jìn)展——中國化學(xué)會全國第十二屆大環(huán)第四屆超分子化學(xué)學(xué)術(shù)討論會論文集[C];2004年

8 ;超分子結(jié)構(gòu)與材料國家重點(diǎn)實(shí)驗(yàn)室[A];中國化學(xué)會第十四屆膠體與界面化學(xué)會議論文摘要集-大會報(bào)告[C];2013年

9 孫炎;王宏;方銘清;肖蕭;楊亞江;;圓二色譜研究具有手性結(jié)構(gòu)的超分子凝膠的相轉(zhuǎn)變行為[A];2010年兩岸三地高分子液晶態(tài)與超分子有序結(jié)構(gòu)學(xué)術(shù)研討會(暨第十一次全國高分子液晶態(tài)與超分子有序結(jié)構(gòu)學(xué)術(shù)論文報(bào)告會)會議論文集[C];2010年

10 崔艷杰;劉麗;孟河;龐文琴;;一個(gè)新穎的具有超分子結(jié)構(gòu)的有機(jī)無機(jī)雜化化合物的水熱合成與表征[A];大環(huán)化學(xué)和超分子化學(xué)研究進(jìn)展——中國化學(xué)會全國第十二屆大環(huán)第四屆超分子化學(xué)學(xué)術(shù)討論會論文集[C];2004年

相關(guān)重要報(bào)紙文章 前2條

1 超艾;超分子結(jié)構(gòu)與材料國家重點(diǎn)實(shí)驗(yàn)室通過論證[N];中國質(zhì)量報(bào);2007年

2 記者:游雪晴 實(shí)習(xí)生:姜靖;超分子:探索在化學(xué)學(xué)科前沿陣地[N];科技日報(bào);2006年

相關(guān)博士學(xué)位論文 前10條

1 馬新賢;苯并咪唑類衍生物超分子凝膠的制備及其發(fā)光性能研究[D];蘭州大學(xué);2015年

2 李亞男;芳香磺酸有機(jī)超分子晶態(tài)網(wǎng)絡(luò)結(jié)構(gòu)的設(shè)計(jì)合成與性能研究[D];黑龍江大學(xué);2015年

3 李杰偉;氟/氰基取代對超分子弱作用及其光電性質(zhì)影響的理論研究[D];南京郵電大學(xué);2015年

4 丁雪華;基于氫鍵構(gòu)筑的含氮雜環(huán)超分子晶體結(jié)構(gòu)及其理論研究[D];南京郵電大學(xué);2015年

5 岳亮;多金屬氧簇離子有機(jī)骨架自組裝[D];吉林大學(xué);2015年

6 周培;基于核苷酸配體的手性配合物和超分子組裝體的研究[D];北京理工大學(xué);2015年

7 譚麗麗;基于柱芳烴的有機(jī)功能材料的制備與應(yīng)用[D];吉林大學(xué);2016年

8 閆毅;多金屬氧簇超分子復(fù)合物動(dòng)態(tài)自組裝研究[D];吉林大學(xué);2011年

9 任玲玲;超分子結(jié)構(gòu)層柱型固定化青霉素酰化酶的插層組裝[D];北京化工大學(xué);2001年

10 馬棟;功能化超分子水凝膠的研究[D];中山大學(xué);2010年

相關(guān)碩士學(xué)位論文 前10條

1 暢若星;多重氫鍵鍵合的聚乳酸/聚(乙烯-co-丁烯)超分子彈性體[D];浙江大學(xué);2016年

2 王碩;以{BW_(12)}為建筑塊的雜化材料的合成、結(jié)構(gòu)與性質(zhì)研究[D];哈爾濱師范大學(xué);2016年

3 鐘陽;CBn與發(fā)光金屬配合物的超分子自組裝研究[D];遼寧大學(xué);2013年

4 謝菊生;2-己基苯并咪唑酰腙類超分子凝膠的制備及其性質(zhì)研究[D];蘭州大學(xué);2016年

5 張遠(yuǎn)超;均苯三甲酰胺衍生物的設(shè)計(jì)合成與超分子性質(zhì)[D];吉林大學(xué);2016年

6 楊鑫;基于二苯醚羧酸的功能超分子的合成、結(jié)構(gòu)和性質(zhì)[D];重慶師范大學(xué);2016年

7 田玲玲;兩類水性凝膠因子與羥丙基-β-環(huán)糊精的超分子共組裝研究[D];華中科技大學(xué);2014年

8 鄒曉春;基于水溶性柱[6]芳烴構(gòu)筑的刺激響應(yīng)性超分子藥物轉(zhuǎn)運(yùn)體系[D];南京航空航天大學(xué);2015年

9 廖烈強(qiáng);二胺衍生物與脂肪胺構(gòu)建新型雙組分超分子熱致可逆有機(jī)凝膠[D];贛南師范學(xué)院;2015年

10 鞏彥君;基于離子自組裝構(gòu)建的超分子納米材料及其功能[D];山東大學(xué);2016年

,

本文編號:1912176

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxue/1912176.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e0f02***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com