復(fù)合型納米光催化材料的制備及其可見(jiàn)光下光催化還原二氧化碳性能的研究
本文選題:光催化還原CO_2 + 納米材料。 參考:《南京大學(xué)》2016年碩士論文
【摘要】:隨著現(xiàn)代化與工業(yè)化進(jìn)程的加快,人類(lèi)對(duì)能源的需求越來(lái)越大。作為主要能量來(lái)源的煤、石油和天然氣等化石能源的過(guò)度消耗造成大氣中以CO2為主的溫室氣體急劇增加,破壞了自然界碳循環(huán)的平衡,導(dǎo)致全球氣候變暖,同時(shí)化石燃料的短缺導(dǎo)致能源危機(jī)。利用光催化還原將溫室氣體CO2轉(zhuǎn)換成有用的碳?xì)淙剂鲜墙档吞寂欧藕吞峁┬滦湍茉吹睦硐胪緩?也是實(shí)現(xiàn)碳循環(huán)的有效方法之一。近年來(lái),受自然界綠色植物光合作用的啟發(fā),以CO2為原料,半導(dǎo)體材料為催化劑,在太陽(yáng)光的照射下利用還原劑將CO2轉(zhuǎn)化為含碳化合物的技術(shù)備受關(guān)注。能夠應(yīng)用于光催化還原的半導(dǎo)體材料種類(lèi)繁多,但各有各的缺點(diǎn)。目前研究較多的TiO2具有廉價(jià)、無(wú)毒、光穩(wěn)定性好、容易制備等優(yōu)點(diǎn),被廣泛地應(yīng)用于光催化分解H2O、光催化還原CO2和有機(jī)污染物降解,但是其光生電子-空穴對(duì)的高復(fù)合率和光譜響應(yīng)范圍窄限制了TiO2的在光催化反應(yīng)中的應(yīng)用。在半導(dǎo)體材料表面擔(dān)載貴金屬增加光吸收或是復(fù)合其它半導(dǎo)體材料來(lái)調(diào)節(jié)材料的能帶結(jié)構(gòu),有助于提高半導(dǎo)體材料的光催化性能。本文制備了兩種復(fù)合型納米光催化材料,并應(yīng)用于光催化還原CO2。主要研究?jī)?nèi)容如下:(1)使用表面活性劑在油浴條件下合成了金納米片,用水熱法合成了高活性{001}面暴露的TiO2納米片。利用含有雙官能團(tuán)的分子連接劑(SH-R-COOH)將兩種片狀材料組裝成納米復(fù)合材料。復(fù)合材料在紫外可見(jiàn)光催化還原CO2實(shí)驗(yàn)中表現(xiàn)出比純相TiO2納米片更高的光催化效率,并且在可見(jiàn)光波段甚至近紅外波段表現(xiàn)出了較高的光催化活性,主要原因是金納米片存在橫向和縱向的SPR效應(yīng)。另外,在不同波段光的照射下或是不同的反應(yīng)介質(zhì)中,光催化還原CO2反應(yīng)會(huì)得到各種各樣的還原產(chǎn)物,包括CO, CH4, CH3OH,和CH3CH2OH等等。(2)構(gòu)建全固態(tài)Z模型光催化體系Bi2WO6/Au/CdS,并在水蒸氣存在的條件下進(jìn)行光催化還原CO2反應(yīng)生成CH4。該體系以Bi2WO6和CdS作為半導(dǎo)體催化劑,Au納米顆粒作為電子傳輸中介提供電荷轉(zhuǎn)移高速通道,有助于提高電子-空穴對(duì)的空間分離效率。與純相Bi2WO6, Bi2WO6/Au和Bi2WO6/CdS相比,Z模型體系的光催化效率得到顯著提高。
[Abstract]:With the acceleration of modernization and industrialization, the demand for energy is increasing. The excessive consumption of fossil energy, such as coal, oil and natural gas, as the main source of energy, has caused a sharp increase in greenhouse gases dominated by CO2 in the atmosphere, which has disrupted the balance of the natural carbon cycle and caused global warming. At the same time, the shortage of fossil fuels led to an energy crisis. Photocatalytic reduction of greenhouse gas CO2 into a useful hydrocarbon fuel is an ideal way to reduce carbon emissions and provide new energy sources. It is also one of the effective ways to realize carbon cycle. In recent years, inspired by the photosynthesis of natural green plants, using CO2 as raw material and semiconductor material as catalyst, the technology of converting CO2 into carbohydrates by reducing agent under sunlight has attracted much attention. There are many kinds of semiconductor materials which can be used in photocatalytic reduction, but each has its own disadvantages. At present, TiO2 has been widely used in photocatalytic decomposition of H _ 2O, photocatalytic reduction of CO2 and degradation of organic pollutants due to its advantages of low cost, non-toxic, good photostability and easy preparation. However, the high recombination rate and narrow spectral response range of photoelectron hole pair limit the application of TiO2 in photocatalytic reaction. It is helpful to improve the photocatalytic performance of semiconductor materials by loading precious metals on the surface of semiconductor materials to increase light absorption or to compound other semiconductor materials to adjust the energy band structure of the materials. In this paper, two kinds of composite nanocrystalline photocatalytic materials were prepared and applied to photocatalytic reduction of CO _ 2. The main contents of this study are as follows: (1) au nanoparticles were synthesized by using surfactants in oil bath and TiO2 nanoparticles with high activity exposed to {001} surface were synthesized by hydrothermal method. Two kinds of lamellar materials were assembled into nanocomposites using a molecular bonding agent (SH-R-COOH) containing bifunctional groups. The composite exhibited higher photocatalytic efficiency than pure phase TiO2 nanoplates in UV-Vis photocatalytic reduction experiment, and showed higher photocatalytic activity in the visible and even near infrared bands. The main reason is the transverse and longitudinal SPR effect in gold nanoparticles. In addition, photocatalytic reduction of CO2 in different wavelengths of light or in different reaction media will result in a variety of reduction products. The all-solid-state Z-model photocatalytic system Bi2WO6 / Au-CdSs was constructed, and the photocatalytic CO2 reaction was carried out in the presence of water vapor to produce Ch _ 4. In this system, Bi2WO6 and CdS are used as semiconductor catalysts, au nanoparticles are used as electron transport mediators to provide charge transfer high speed channels, which is helpful to improve the spatial separation efficiency of electron-hole pairs. Compared with the pure phase Bi2WO6, Bi2WO6/Au and Bi2WO6/CdS, the photocatalytic efficiency of the ZZ model system was significantly improved.
【學(xué)位授予單位】:南京大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:O643.36
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙毅;劉威;張自麗;祝曉雨;;光催化還原二氧化碳影響因素分析[J];中國(guó)電力;2013年01期
2 史載鋒,張?zhí)K敏,林小明;光催化還原法制備載銀二氧化鈦[J];海南師范學(xué)院學(xué)報(bào)(自然科學(xué)版);2001年04期
3 張昊,譚欣,趙林;廢水中重金屬離子的光催化還原研究進(jìn)展[J];天津理工學(xué)院學(xué)報(bào);2004年03期
4 張?zhí)煊?由蘭英,張友蘭,趙進(jìn)才;石英反應(yīng)器中硝基物的光催化還原[J];精細(xì)化工;2005年03期
5 孫彥;陳亮;陳東輝;黃滿(mǎn)紅;;光催化還原十溴聯(lián)苯醚[J];廣州化工;2012年01期
6 付宏祥,,呂功煊,李新勇,李樹(shù)本;重金屬離子的光催化還原研究進(jìn)展[J];感光科學(xué)與光化學(xué);1995年04期
7 孟元華;;雜多酸光催化還原回收廢水中銀的試驗(yàn)探討[J];職業(yè)與健康;2014年01期
8 徐玉欣,李越湘,彭紹琴;銀銅離子復(fù)合體系的光催化還原[J];環(huán)境化學(xué);2004年05期
9 繆應(yīng)純;王剛;高亞玲;吳仕鵬;;光催化還原硝酸根的研究進(jìn)展[J];安徽農(nóng)業(yè)科學(xué);2012年34期
10 鞠春紅;張偉君;王志成;李福
本文編號(hào):1833211
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1833211.html