納米氧化釕及其與氮摻雜碳納米管復(fù)合材料的制備與性能研究
發(fā)布時(shí)間:2018-04-25 16:59
本文選題:納米氧化釕 + 反應(yīng)沉淀 ; 參考:《北京化工大學(xué)》2017年碩士論文
【摘要】:隨著化石能源的開采,其枯竭不可避免,同時(shí),由于化石能源在使用過(guò)程中產(chǎn)生有害氣體和二氧化碳,危害了全球生態(tài)。因而,開發(fā)更清潔的可再生能源迫在眉睫。氫燃料具有無(wú)污染、效率高以及來(lái)源廣等一系列優(yōu)點(diǎn)而被廣泛關(guān)注,是替代化石燃料的最佳選擇。電解水是提供氫燃料的主要來(lái)源,然而,由于其陰極發(fā)生的析氧反應(yīng)(OER)需要很高的過(guò)電勢(shì),使得反應(yīng)需要很高的能量,需要采用催化劑。納米氧化釕由于具有很高的OER催化性能而被廣泛關(guān)注,且通過(guò)與碳納米材料的高效復(fù)合,可使納米氧化釕具有更好的導(dǎo)電性,從而實(shí)現(xiàn)更好的催化性能。鑒于此,論文采用反應(yīng)沉淀法制備納米氧化釕粉體和分散體,以及納米氧化釕-氮摻雜碳納米管復(fù)合材料,進(jìn)一步對(duì)納米氧化釕-氮摻雜碳納米管復(fù)合材料在電解水析氧反應(yīng)的催化性能進(jìn)行研究。主要研究?jī)?nèi)容和結(jié)果如下:1、采用超重力反應(yīng)沉淀法結(jié)合水熱制備納米氧化釕粉體。重點(diǎn)考察了溶液pH、水熱溫度、旋轉(zhuǎn)床轉(zhuǎn)速以及進(jìn)料流量等工藝參數(shù)對(duì)納米氧化釕顆粒尺寸、形貌和分散性等的影響規(guī)律,確定了較佳工藝條件:溶液pH為9~10,陳化時(shí)間3~5 h,水熱溫度160℃,水熱時(shí)間12 h,旋轉(zhuǎn)床轉(zhuǎn)速800 rpm,進(jìn)料流量300 mL·in-1。所得納米氧化釕粉體顆粒平均尺寸1.4 nm,顆粒呈球形,為金紅石晶型結(jié)構(gòu),結(jié)合水含量為0.57個(gè),比表面積為208 m2·g-1。2、采用反應(yīng)沉淀法結(jié)合表面改性制備納米氧化釕分散體?疾炝烁男詣┵|(zhì)量添加比、改性pH、水醇比以及陳化溫度等各個(gè)工藝條件對(duì)分散體分散性的影響,得到較優(yōu)工藝條件:改性劑質(zhì)量添加比為30%,改性pH為1,分散液的水醇比為1:2。所得納米氧化釕分散體顆粒平均尺寸為1.2 nm,顆粒形貌為球形,其分散穩(wěn)定性較好,放置12個(gè)月不發(fā)生沉降。3、采用反應(yīng)沉淀法結(jié)合煅燒原位負(fù)載制備納米氧化釕-氮摻雜碳納米管復(fù)合材料?疾炝颂砑颖、煅燒溫度以及煅燒時(shí)間等工藝條件對(duì)復(fù)合材料復(fù)合效果、氧化釕顆粒尺寸以及其OER催化性能的影響,得到較佳工藝條件:三氯化釕與氮摻雜碳納米管添加比為1:2,鍛燒溫度300 ℃,椴燒時(shí)間24 h。所得納米氧化釕-氮摻雜碳納米管復(fù)合材料復(fù)合較好,負(fù)載的納米氧化釕平均尺寸為2.4 nm。其起始過(guò)電位為179 mV,在電流密度為10 mA·cm-1時(shí)過(guò)電位為303 mV,具有較高的OER催化性能。
[Abstract]:With the exploitation of fossil energy, it is inevitable to dry up. At the same time, because of the harmful gas and carbon dioxide produced in the process of using fossil energy, it endangers the global ecology. Therefore, the development of cleaner renewable energy is imminent. Hydrogen fuel is the best alternative to fossil fuels because it has a series of advantages such as non-pollution, high efficiency and a wide range of sources. Electrolytic water is the main source of hydrogen fuel. However, because the oxygen evolution reaction occurred at its cathode requires a high overpotential, the reaction needs a high energy and needs a catalyst. Ruthenium oxide nanocrystalline has been widely concerned because of its high catalytic performance of OER, and can achieve better catalytic performance by highly effective compounding with carbon nanomaterials. In view of this, the nanometer Ru _ 2O _ 3 powder and dispersion were prepared by reactive precipitation method, and the nano-Ru _ 2O _ 3-N doped carbon nanotube composites were prepared. The catalytic properties of ruthenium oxide-nitrogen-doped carbon nanotube composites for oxygen evolution in electrolytic water were further studied. The main contents and results are as follows: 1. Nanocrystalline ruthenium oxide powders were prepared by high gravity reactive precipitation combined with hydrothermal method. The effects of solution pH, hydrothermal temperature, rotating speed of rotating bed and feed flow rate on the size, morphology and dispersion of Ruthenium oxide nanoparticles were investigated. The optimum technological conditions were determined as follows: solution pH 9 ~ 10, aging time 3 ~ 5 h, hydrothermal temperature 160 鈩,
本文編號(hào):1802186
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1802186.html
最近更新
教材專著