以白云鄂博稀土尾礦為原料制備稀土基摻雜型復(fù)合氧化物催化材料的研究
本文選題:稀土尾礦 + 摻雜型稀土基復(fù)合氧化物 ; 參考:《內(nèi)蒙古大學(xué)》2017年碩士論文
【摘要】:我國超過一半以上的稀土資源來自于內(nèi)蒙古包頭的白云鄂博稀土礦床中,該礦經(jīng)開采、浮選以及分離處理后會(huì)產(chǎn)生鐵精礦和稀土尾礦,由于采選工藝落后等因素使稀土尾礦中仍含有部分的可回收資源,例如赤鐵礦、獨(dú)居石和氟碳鈰礦等。這些稀土尾礦如無法得到有效利用,會(huì)造成極大的資源浪費(fèi),并產(chǎn)生重大環(huán)境問題,因此急需找到一條合理、可行、綠色、高效的尾礦綜合利用途徑。與此同時(shí),在化石能源逐漸枯竭、全球環(huán)境問題日益突出的今天,加速發(fā)展廉價(jià)易得的非貴金屬氧化物電催化劑是推動(dòng)清潔、高效的燃料電池走向產(chǎn)業(yè)化的必經(jīng)之路。鐵-鈰復(fù)合氧化物基電催化材料由于其廉價(jià)易得、原材料儲(chǔ)量大以及良好的催化性能,近年來在燃料電池氧還原催化領(lǐng)域一直備受關(guān)注。而稀土尾礦中同時(shí)含有Fe,Ce元素以及Al,Mg,Co,K等微量元素,前者可作為催化劑的主要活性組分,后者則以摻雜的方式進(jìn)入到催化劑中,起到助催化劑的作用,在提升電催化材料的導(dǎo)電率、催化輕度和穩(wěn)定性方面有著不可多得的天然優(yōu)勢(shì)。針對(duì)白云鄂博稀土尾礦高值化利用這一重大課題,本文擬將稀土尾礦不經(jīng)深度分離提純直接制備稀土基摻雜型復(fù)合氧化物催化材料,重點(diǎn)探索稀土尾礦的化學(xué)組成、溶液化學(xué)、沉淀行為等理化特性,并基于其溶解和沉淀化學(xué),通過調(diào)節(jié)稀土尾礦酸浸液溶液的pH值,將稀土尾礦中Fe和Ce等富含元素轉(zhuǎn)化為尺寸和形貌可控的稀土基復(fù)合氧化物催化材料(Ce02-Fe2O3),而微量元素A1,Mg,Co,K作為助催化劑摻入到稀土基復(fù)合氧化物的晶格當(dāng)中,從而制備得到以稀土基復(fù)合氧化物Ce02-Fe2O3為基質(zhì)、微量元素Al,Mg,Co,K為摻雜離子的摻雜型稀土基復(fù)合氧化物催化材料(Ce02-Fe2O3),并系統(tǒng)評(píng)價(jià)其在燃料電池陰極氧還原反應(yīng)領(lǐng)域中的電催化性能,以期獲得高價(jià)值的、具有自主知識(shí)產(chǎn)權(quán)的稀土尾礦的摻雜型稀土基復(fù)合氧化物催化材料,實(shí)現(xiàn)其在能源催化轉(zhuǎn)化和環(huán)境催化領(lǐng)域的應(yīng)用。本文第一章為緒論部分,主要綜述了稀土尾礦綜合利用的現(xiàn)狀、燃料電池陰極氧還原反應(yīng)的電催化劑的研究進(jìn)展,確立了本文的選題依據(jù),提出了將稀土尾礦不經(jīng)深度分離提純直接制備摻雜型稀土基復(fù)合氧化物催化材料的稀土尾礦綜合利用的新途徑。本文第二章以白云鄂博稀土尾礦為研究對(duì)象,采用X射線粉晶衍射儀(XRD)和X射線熒光光譜(XRF)等研究方法,深入研究了稀土尾礦的物相與化學(xué)成分、溶液化學(xué)、溶解劑沉淀行為等特性,通過對(duì)稀土尾礦進(jìn)行球磨、酸浸、沉淀等加工處理,獲得了可用于制備摻雜型稀土基復(fù)合氧化物催化材料的稀土基復(fù)合氫氧化物前軀體。本文第三章以前述所得的稀土基復(fù)合氫氧化物前驅(qū)體為原料,采用水熱/溶劑熱方法,通過調(diào)節(jié)溶液pH值、表面活性劑種類、溶劑類型及其他反應(yīng)條件,制備了摻雜型稀土基復(fù)合氧化物催化材料。利用X射線粉晶衍射儀(XRD)、掃描電子顯微鏡(SEM)、透射電子顯微鏡(TEM)等表征手段,對(duì)摻雜型稀土基復(fù)合氧化物催化材料的結(jié)構(gòu)、組成、相態(tài)、尺寸和形貌等進(jìn)行了系統(tǒng)研究,并通過線性掃描、圓盤電極測(cè)試等電化學(xué)方法對(duì)其催化燃料電池陰極氧還原反應(yīng)的催化性能進(jìn)行了初步研究。研究發(fā)現(xiàn),通過調(diào)控稀土尾礦溶液酸浸pH值獲得不同氫氧化物沉淀物并以其為前驅(qū)體,使用不同表面活性劑可得到具有不同尺寸和形貌的摻雜型稀土基復(fù)合氧化物催化材料。通過優(yōu)化反應(yīng)條件,所得摻雜型稀土基復(fù)合氧化物催化材料對(duì)氧還原反應(yīng)催化的半波電位可達(dá)0.78 V,已經(jīng)具有了較好的氧還原電催化性能,為稀土尾礦制備高附加值摻雜型稀土基復(fù)合氧化物催化材料,實(shí)現(xiàn)稀土尾礦的無尾化綜合利用提供了一條簡便、廉價(jià)、高附加值的利用途徑。本文第四章對(duì)全文進(jìn)行了總結(jié),并對(duì)論文限于時(shí)間未完成的研究內(nèi)容和下一步研究工作進(jìn)行了展望,為后人開展相關(guān)工作提供指導(dǎo)。
[Abstract]:More than half of the rare earth resources in China are derived from the Baiyunebo rare earth deposits in Baotou, Inner Mongolia. After mining, flotation and separation, the ore will produce iron concentrate and rare earth tailings. Due to the backward mining technology, some recoverable resources, such as hematite, monazite and fluorocarbite, are still contained in the rare earth tailings. If the rare earth tailing can not be effectively used, it will cause great waste of resources and produce major environmental problems. Therefore, it is urgent to find a reasonable, feasible, green and efficient way for comprehensive utilization of tailings. At the same time, the rapid development of cheap and inexpensive non expensive in today's increasingly depleted fossil energy and the increasingly prominent global environmental problems. Metal oxide electrocatalysts are the only way to promote the industrialization of clean and efficient fuel cells. The iron cerium oxide based oxide based electrocatalysis materials have attracted much attention in the field of Oxygen Reduction Catalysis in recent years because of their cheap availability, large raw material reserves and good catalytic performance. The rare earth tailings contain Fe at the same time. The Ce element and the trace elements such as Al, Mg, Co, K can be used as the main active component of the catalyst. The latter enters the catalyst in the way of doping, and plays the role of helping the catalyst. It has a rare natural advantage in improving the electrical conductivity of the electrocatalytic materials, and in the light and stability of the catalysis of Baiyunebo rare earth tailing. Using this important topic, the rare earth tailings are prepared without depth separation and purification to direct the preparation of rare earth based compound oxide catalytic materials. The chemical composition, solution chemistry and precipitation behavior of rare earth tailing are focused on, and the pH value of the acid leaching solution of rare earth tailing is adjusted based on its dissolution and precipitation chemistry. The rich elements such as Fe and Ce in rare earth tailing are converted into rare earth based composite oxide catalytic materials (Ce02-Fe2O3) with controllable size and morphology, while trace elements A1, Mg, Co, K are added to the lattice of rare earth based composite oxides as Co catalysts. Thus, the matrix of the rare earth based compound oxide Ce02-Fe2O3 is prepared, and the trace elements Al, Mg, C are obtained. O, K is doped ion doped rare earth based composite oxide catalytic material (Ce02-Fe2O3), and its electrocatalytic performance in the cathode oxygen reduction reaction of fuel cells is systematically evaluated in order to obtain high value rare earth tailings doped rare earth based compound oxide catalytic materials with independent intellectual property rights, and to realize their energy catalysis. The first chapter is the introduction part of this paper, which mainly summarizes the present situation of the comprehensive utilization of rare earth tailing, the research progress of the electrocatalyst for the cathode oxygen reduction reaction of fuel cells, establishes the basis for this paper, and puts forward the direct preparation of the doped rare-earth compound oxygen by the non depth separation and purification of the rare earth tailings. A new way for the comprehensive utilization of rare earth tailings of chemical materials is made. In this paper, the second chapter of this paper is based on the rare earth tailings in Baiyunebo as the research object. The properties of the phase and chemical composition of the rare earth tailings, the chemical composition of the solution, the precipitation behavior of the dissolved agent and so on, are studied by using the rare earth tailings in Baiyunebo as the research object. Rare earth tailings are processed by ball milling, acid leaching, precipitation and other processing. The rare earth based compound hydroxide precursor can be obtained for the preparation of doped rare-earth compound oxide catalytic material. In the third chapter, the rare earth based compound hydroxide precursor is used as the raw material, the water hot / solvothermal method is used to adjust the pH value of the solution. Doped rare-earth matrix composite oxide catalytic materials are prepared by the type of surface active agent, type of solvent and other reaction conditions. The structure, composition, phase state, size and morphology of the doped rare-earth complex oxide catalytic materials are made by means of X ray powder crystal diffractometer (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The catalytic performance of the cathode oxygen reduction reaction in the catalytic fuel cell was preliminarily studied by linear scanning, disc electrode testing and other electrochemical methods. It was found that different hydroxides precipitates were obtained by adjusting the acid leaching pH value of the rare earth tailing solution and using the different surface activity as precursors. The doped rare-earth matrix composite oxide catalytic material with different sizes and morphologies can be obtained. By optimizing the reaction conditions, the half wave potential of the doped rare-earth matrix composite oxide catalytic material can reach 0.78 V for oxygen reduction reaction. It has better catalytic performance of oxygen reduction and high added value for the rare earth tailings. The doped rare-earth matrix composite oxide catalytic material has provided a simple, cheap and high value-added utilization way to realize the comprehensive utilization of rare-earth tailings, which is cheap and high added value. The fourth chapter of this paper is a summary of the full text, and the research content and the next research work of the paper are prospected for the future generations to carry out the related work for the future generations. Provide guidance.
【學(xué)位授予單位】:內(nèi)蒙古大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O643.36
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 馬瑩;李娜;王其偉;楊啟山;;白云鄂博礦稀土資源的特點(diǎn)及研究開發(fā)現(xiàn)狀[J];中國稀土學(xué)報(bào);2016年06期
2 瑪瑞亞;季宏兵;高陽;丁淮劍;李彩;;Distribution of rare earth elements in agricultural soil and human body(scalp hair and urine) near smelting and mining areas of Hezhang, China[J];Journal of Rare Earths;2016年11期
3 張悅;林海;董穎博;許曉芳;王鑫;高月嬌;;白云鄂博地區(qū)尾礦中鐵、鈮、稀土、螢石綜合回收研究[J];稀有金屬;2017年07期
4 Hong-Rui Fan;Kui-Feng Yang;Fang-Fang Hu;Shang Liu;Kai-Yi Wang;;The giant Bayan Obo REE-Nb-Fe deposit,China:Controversy and ore genesis[J];Geoscience Frontiers;2016年03期
5 M.P.Smith;K.Moore;D.Kavecsanszki;A.A.Finch;J.Kynicky;F.Wall;;From mantle to critical zone:A review of large and giant sized deposits of the rare earth elements[J];Geoscience Frontiers;2016年03期
6 李軍燕;宋忠賢;寧平;張秋林;劉昕;李昊;黃真真;;Influence of calcination temperature on selective catalytic reduction of NO_x with NH_3 over CeO_2-ZrO_2-WO_3 catalyst[J];Journal of Rare Earths;2015年07期
7 Yong-li JIN;Zeng-wu ZHAO;Jie-yu ZHANG;Wen-jie NI;;Thermodynamic Behaviors of Nb and P in Dephosphorization of Niobium-bearing Hot Metal with BaO-based Slag[J];Journal of Iron and Steel Research(International);2014年S1期
8 He Yang;Yi Rong;Rong Tang;Xiang-Xin Xue;Yong Li;;Recovery of iron from Baotou rare earth tailings by magnetizing roast[J];Rare Metals;2013年06期
9 方德;HE Feng;謝峻林;FU Zhengbing;CHEN Junfu;;Effects of Atmospheres and Precursors on MnO_x/TiO_2 Catalysts for NH_3-SCR at Low Temperature[J];Journal of Wuhan University of Technology(Materials Science Edition);2013年05期
10 宗保寧;慕旭宏;張曉昕;孟祥X;喬明華;;急冷非晶態(tài)鎳合金催化劑的研究開發(fā)和工業(yè)應(yīng)用(英文)[J];催化學(xué)報(bào);2013年05期
,本文編號(hào):1782609
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1782609.html