雙元改性劑協同調控聚乳酸結晶及性能研究
本文選題:聚乳酸 + 雙元改性劑。 參考:《寧夏大學》2017年碩士論文
【摘要】:針對聚乳酸(PLLA)結晶速率慢、韌性差的不足,本文通過添加雙元改性劑(TMC-210/Talc、TMB-5/PEG、TMC-328/TMP-6)來實現PLLA結晶與性能的調控。利用差示掃描量熱儀(DSC)、X射線粉末衍射儀(WAXD)、小角X射線散射儀(SAXS)、掃描電子顯微鏡(SEM)、偏光顯微鏡(POM)和力學性能測試考察了雙元改性劑對PLLA的結晶行為與韌性的影響。首先,將不同比例的改性劑TMC-210/Talc與PLLA進行熔融共混,并考察二者對PLLA結晶能力和力學性能的影響。研究發(fā)現,TMC-210/Talc協同改善了 PLLA的結晶能力,使結晶速率加快、成核密度增加,晶體尺寸和長周期均減小,但對PLLA的結構和晶型沒有影響。力學測試表明,添加4%的Talc,使PLLA/TMC-210/Talc共混材料的斷裂伸長率達到23.6%,比PLLA/TMC-210共混物提高了 262%。當添加含量為1%的Talc時,PLLA/TMC-210/Talc共混材料的韌性達到最高為5.65 KJ/m2,比PLLA/TMC-210共混物和純PLLA分別提高了 29.3%和2.1倍。其次,利用增塑劑PEG對PLLA/TMB-5共混材料進行改性。研究結果表明,在PLLA中添加TMB-5與PEG后,PLLA的玻璃化轉變溫度下降,結晶峰溫度向高溫方向移動,結晶速率和成核速率均加快,球晶尺寸變大,同時伴隨有環(huán)帶球晶的出現,但對PLLA的結構和晶型沒有影響。力學測試表明TMB-5/PEG協同改善了 PLLA的韌性,在TMB-5的含量為0.5%、PEG的含量為3%時,PLLA/TMB-5/PEG共混材料的韌性達到最高為5.05KJ/m2,較PLLA/TMB-5混合物及純PLLA分別提高了 22.9%和1.5倍。最后,采用熔融共混的方法制備了 PLLA/TMC-328/TMP-6共混材料,系統研究了雙元改性劑對PLLA結晶行為、晶體形態(tài)和力學性能方面的影響。結果表明,雙元改性劑TMC-328/TMP-6顯著提高了聚乳酸的結晶峰溫度和結晶速率,成核效果優(yōu)于傳統的單一 TMC-328改性劑,且不影響PLLA的結構和晶型。另外,適量的雙元改性劑可以提高PLLA的韌性,在TMC-328含量為0.6%,TMP-6的含量為0.4%時,PLLA/TMC-328/TMP-6共混材料的韌性達到了最大值4.33 KJ/m2,較PLLA/TMC-328共混物和純PLLA分別約提高了 10.9%和1.3倍。
[Abstract]:In view of the low crystallization rate and poor toughness of polylactic acid (PLLA), the crystallization and properties of PLLA are regulated by adding TMC-210 / Talc / TMB-5 / PEGN TMC-328 / TMP-6.The effects of binary modifiers on the crystallization behavior and toughness of PLLA were investigated by means of differential scanning calorimeter (DSC), small angle X-ray diffractometer (SAXS), scanning electron microscope (SEM) and polarizing microscope (Poms).Firstly, different ratio of modifier TMC-210/Talc and PLLA were melt blended and their effects on crystallization ability and mechanical properties of PLLA were investigated.It is found that TMC-210 / Talc synergistically improves the crystallization ability of PLLA, accelerates the crystallization rate, increases the nucleation density, decreases the crystal size and long period, but has no effect on the structure and crystal form of PLLA.The mechanical tests show that the elongation at break of PLLA/TMC-210/Talc blends can reach 23.6 by adding 4% Talc, which is 2622% higher than that of PLLA/TMC-210 blends.When 1% Talc was added, the toughness of PLLA / TMC-210 / Talc blends reached a maximum of 5.65 KJ / m ~ 2, which was 29.3% and 2.1 times higher than that of PLLA/TMC-210 blends and pure PLLA, respectively.Secondly, PLLA/TMB-5 blends were modified by plasticizer PEG.The results show that the glass transition temperature of PLLA decreases with the addition of TMB-5 and PEG, the crystallization peak temperature shifts to high temperature, the crystallization rate and nucleation rate are accelerated, and the spherulite size becomes larger, accompanied by the appearance of ring spherulites.However, there is no effect on the structure and crystal form of PLLA.The mechanical tests show that TMB-5/PEG synergistically improves the toughness of PLLA. When the content of TMB-5 is 0.5%, the toughness of PLLA / TMB-5 / PEG blend is 5.05 KJ / m2, which is 22. 9% and 1. 5 times higher than that of PLLA/TMB-5 mixture and pure PLLA, respectively.Finally, PLLA/TMC-328/TMP-6 blends were prepared by melt blending. The effects of binary modifiers on the crystallization behavior, crystal morphology and mechanical properties of PLLA were systematically studied.The results showed that the crystallization peak temperature and crystallization rate of polylactic acid were significantly increased by TMC-328/TMP-6, and the nucleation effect was better than that of single TMC-328 modifier, and the structure and crystal form of PLLA were not affected.In addition, the toughness of PLLA can be improved by a proper amount of binary modifier. When the content of TMC-328 is 0.6 and TMP-6 is 0.4, the toughness of PLLA-TMC-328 / TMP-6 blends reaches a maximum value of 4.33KJ / m2, which is about 10.9% and 1.3 times higher than that of PLLA/TMC-328 blends and pure PLLA blends, respectively.
【學位授予單位】:寧夏大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O633.14
【參考文獻】
相關期刊論文 前10條
1 周鈴;任煜;徐康麗;;常壓等離子體對聚乳酸非織造材料的改性處理[J];南通大學學報(自然科學版);2016年04期
2 林強;丁正;王迎雪;彭少賢;趙西坡;;PLA/PBAT復合材料的結構與性能[J];塑料;2016年03期
3 王飛飛;夏超;靳明;張杰;;成核劑TMB-5對聚乳酸結晶性能的影響[J];合成樹脂及塑料;2015年06期
4 石堯麒;辛忠;陸穎音;周帥;;對叔丁基杯[4]芳烴包合物對聚乳酸結晶過程的影響[J];化工學報;2015年09期
5 李楠;史學濤;張廣成;景占鑫;王建興;;聚乳酸立構復合物的結晶行為[J];高分子材料科學與工程;2014年08期
6 馬佳;;聚乳酸合成和改性[J];聚酯工業(yè);2014年03期
7 李訓剛;;成核劑TMC-328及TMC-300對聚乳酸結晶性能的影響[J];塑料助劑;2014年02期
8 張光華;熊偉;陳淼;劉學謙;;PEG增塑PLA/成核劑復合體系的結晶行為和力學性能[J];陜西科技大學學報(自然科學版);2014年01期
9 羅春燕;陳衛(wèi)星;李永飛;;PLLA/PEG共混物結晶行為研究[J];西安工業(yè)大學學報;2013年08期
10 劉亞龍;鄭紅娟;沈躍威;馬躍鋒;劉蘭芳;趙曉鳳;席克會;;聚乳酸的改性及應用研究進展[J];科技信息;2013年21期
相關博士學位論文 前2條
1 馮江濤;碳納米管/聚乳酸復合材料的制備及結構和性能[D];哈爾濱工業(yè)大學;2009年
2 何勇;不同分子量與構型結構的聚乳酸均聚物與立體共聚物的凝聚態(tài)、熱力學及結晶動力學研究[D];復旦大學;2008年
相關碩士學位論文 前9條
1 丁生芳;聚乳酸結晶和增韌改性研究[D];寧夏大學;2016年
2 司朋飛;氫鍵作用對脂肪族聚酯結晶行為的影響[D];寧夏大學;2016年
3 王軍麗;PLLA基復合材料的結晶行為及力學性能研究[D];鄭州大學;2015年
4 文豪;成核改性對聚乳酸結晶及其性能的影響[D];江蘇科技大學;2014年
5 李冬冬;聚乳酸/POE/納米二氧化硅復合材料的制備與性能[D];浙江大學;2011年
6 郭彥彬;耐熱級生物降解塑料聚乳酸的研究[D];江蘇科技大學;2011年
7 胡德富;聚乳酸結晶、熔融行為以及無序—有序相轉變[D];鄭州大學;2009年
8 徐明;生物降解材料聚乳酸的合成與改性工藝的研究[D];蘭州理工大學;2008年
9 沈兆宏;生物降解塑料聚乳酸的結晶改性研究[D];浙江工業(yè)大學;2008年
,本文編號:1773474
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1773474.html