可燃固體廢棄物熱解特性及其過程數(shù)值模擬研究
本文選題:可燃固體廢棄物 切入點:動力學(xué) 出處:《東南大學(xué)》2017年博士論文
【摘要】:可燃固體廢棄物(CSW)作為一種有機(jī)碳源,可用于開發(fā)替代部分石油的液體燃料與化學(xué)品,從而緩解我國能源短缺和廢棄物處理困難兩方面難題。在眾多CSW高值化開發(fā)技術(shù)方法中,熱解制備高品質(zhì)液體產(chǎn)物技術(shù)具有良好的發(fā)展前景。本文從基礎(chǔ)和應(yīng)用兩個方面出發(fā),在CSW原料的熱解動力學(xué)、熱解產(chǎn)物高值化的機(jī)理和特征、熱解產(chǎn)物性質(zhì)和潛在利用途徑以及熱解過程數(shù)值模擬等方面開展了較全面的研究。在熱重反應(yīng)器中研究了兩種常見CSW原料的熱解失重特性及動力學(xué)。廢紙板和廢輪胎在約220~400℃和159 ~523℃范圍內(nèi)分別有一個主要失重峰,且受升溫速率的影響比較明顯。利用高斯分峰擬合方法對微分失重(DTG)曲線進(jìn)行擬合,發(fā)現(xiàn)廢紙板DTG曲線可用兩個峰進(jìn)行擬合,而廢輪胎DTG曲線需要三個峰進(jìn)行擬合,每一個擬合峰均可代表原料的不同失重機(jī)理。利用Coats-Redfern法計算動力學(xué)參數(shù),隨后聯(lián)合使用Flynn-Wall-Ozawa法和Malek法篩選出最合適的機(jī)理函數(shù),從而獲得了兩種原料在主要失重階段的動力學(xué)模型及相關(guān)參數(shù)。利用裂解-氣相色譜/質(zhì)譜聯(lián)用儀(Py-GC/MS)研究了催化劑及改性催化劑對廢紙板快速熱解制備芳香烴的影響。廢紙板快速熱解產(chǎn)物以糖類、醛類、酮類等含氧有機(jī)物為主,品質(zhì)較低。添加微孔分子篩HY、HZSM-5 (HZ)和廉價礦石凹凸棒土(PA)促進(jìn)了芳香烴的生成,提高了產(chǎn)物品質(zhì)。為進(jìn)一步提高催化劑活性,對效果良好的HZ進(jìn)行堿處理改性,獲得含微孔和介孔的分級孔道分子篩,其孔道擴(kuò)散性能得到明顯改善。經(jīng)過溫和堿改性(NaOH溶液濃度≤0.3M)的HZ顯著增加了目標(biāo)產(chǎn)物BTX (苯、甲苯和二甲苯)的產(chǎn)量,并有效減少了 HZ的結(jié)焦率,實現(xiàn)了廢紙板熱解產(chǎn)物高值化。利用Py-GC/MS探索了廢輪胎催化快速熱解制取芳香烴的機(jī)理。對廢輪胎熱解重要產(chǎn)物D-檸檬烯的降解過程進(jìn)行了研究,發(fā)現(xiàn)其在600℃及更高溫度下被芳構(gòu)化。根據(jù)產(chǎn)物分布及文獻(xiàn)報導(dǎo),提出了 D-檸檬烯在不同溫度下降解主要途徑,并利用這些途徑解釋了廢輪胎熱解產(chǎn)物轉(zhuǎn)化特性。對廢輪胎及其中間產(chǎn)物的催化熱解試驗研究發(fā)現(xiàn),HY、HZ和PA對芳香烴的催化機(jī)理各不相同:HY催化D-檸檬烯和聚丁二烯橡膠(BR)熱解產(chǎn)物芳構(gòu)化效果良好,而HZ僅對催化BR熱解產(chǎn)物芳構(gòu)化效果明顯,PA則對芳香烴和烯烴產(chǎn)物均有一定促進(jìn)效果。該結(jié)果解釋了廢輪胎催化快速熱解產(chǎn)物向芳香烴轉(zhuǎn)化的途徑,從而有利于廢輪胎熱解產(chǎn)物高值化。在最大處理量為10 kg/h的流化床反應(yīng)器內(nèi),進(jìn)行了實際CSW混合原料的熱解制油試驗。采用多級冷凝系統(tǒng),獲得38.4~56.5 wt%熱解油產(chǎn)物,分為水溶相和有機(jī)相。水溶相含水率高,主要有機(jī)組分為酸類、羰基類、酚類和糖類,可提質(zhì)后加以利用。而有機(jī)相幾乎不含水,主要由芳香烴和酚類組成,且重金屬Cd、Pb和Zn含量低,燃料性質(zhì)與原油相近。水溶相和有機(jī)相分層有利于CSW熱解油的分級利用,二者可通過不同的方式加以利用。除熱解油外,熱解炭和熱解氣產(chǎn)物可通過燃燒為熱解反應(yīng)提供熱量。在試驗研究基礎(chǔ)上,對CSW在流化床內(nèi)的熱解過程進(jìn)行了數(shù)值模擬研究。采用雙歐拉模型模擬多相流流動,多組分、多步反應(yīng)模型模擬CSW原料的熱解過程。編制了非均相反應(yīng)的用戶自定義函數(shù)(UDF)程序,利用計算流體力學(xué)(CFD)軟件進(jìn)行耦合計算。模擬結(jié)果表明,隨著熱解時間的增加,流化床內(nèi)逐漸趨于穩(wěn)定流化狀態(tài),出口產(chǎn)物流量在±10%范圍內(nèi)波動。模擬了工況對產(chǎn)物產(chǎn)率的影響,發(fā)現(xiàn)熱解溫度對產(chǎn)物產(chǎn)率影響最大,而初始床層高度對產(chǎn)物波動影響最明顯。與試驗結(jié)果相比,模擬獲得的床內(nèi)溫度分布結(jié)果與產(chǎn)物產(chǎn)率隨溫度的變化規(guī)律結(jié)果基本一致。CSW熱解過程的CFD模擬結(jié)果可為工藝設(shè)計和工況優(yōu)化提供有價值的參考。
[Abstract]:Combustible solid waste (CSW) as an organic carbon source, can be used for liquid fuels and chemicals to develop alternative part of oil, so as to relieve the two aspects of China's energy shortage and waste disposal problems. In many CSW high value method developing technology, prepared by pyrolysis of high quality liquid product technology has good development prospects. This paper from two aspects. The foundation and application of the pyrolysis kinetics of CSW raw materials, pyrolysis mechanism and characteristics of high value, carry out a comprehensive study of the properties of pyrolysis products and the potential utilization of pyrolysis process and numerical simulation. In the thermal pyrolysis reactor of two kinds of CSW raw materials weightlessness characteristics and kinetics of waste paper and waste tires. At about 220~400 degrees and 159~523 degrees respectively within the scope of one of the main peaks, and affected by the heating rate is more obvious. By Gauss The peak fitting method of differential weight loss (DTG) curve fitting DTG curve can be found in waste cardboard two peaks were fitted, and waste tire DTG curve requires three peaks were fitted, different weight loss mechanism on each peak can be the representative materials. The kinetic parameters calculated by Coats-Redfern method, then the combined use of Flynn-Wall-Ozawa and Malek method to select the most appropriate function mechanism, dynamics model and related parameters to obtain two kinds of raw materials in the main weight loss stage. Using pyrolysis gas chromatography / mass spectrometry (Py-GC/MS) to study the effects of catalyst and preparation of waste paper fast pyrolysis of aromatic hydrocarbon catalyst modified by fast pyrolysis of waste paper. The product of sugars, aldehydes, ketones and other organic compounds containing oxygen, low quality. Adding zeolite HY, HZSM-5 (HZ) and cheap ore attapulgite (PA) promotes the formation of aromatic hydrocarbon, improve Product quality. In order to further improve the catalytic activity of HZ, good effect of alkali modification, to obtain hierarchical molecules containing microporous and mesoporous sieve pore diffusion, its performance is significantly improved. After mild alkali modification (NaOH concentration = 0.3M) HZ significantly increased the target product BTX (benzene, toluene and xylene) production, and effectively reduce the coking rate of HZ, realized the waste paper pyrolysis products of high value. The use of Py-GC/MS to explore the mechanism of the catalytic waste tires from fast pyrolysis of aromatic hydrocarbons. On pyrolysis product of important D- limonene degradation process was studied, which was found in aromatization 600 degrees and higher temperature. According to the distribution of products and literature, put forward D- limonene degradation at different temperatures are the main way, and use these ways to explain the transformation characteristics of waste tyre pyrolysis of waste tire and its intermediate products. Experimental study on catalytic pyrolysis of the discovery, HY, HZ and PA on the catalytic mechanism of aromatic hydrocarbon is different: HY catalytic D- limonene and polybutadiene rubber (BR) pyrolysis product of aromatization effect is good, but HZ only BR on the catalytic pyrolysis of aromatization effect is obvious, PA of aromatic hydrocarbons and olefins the product has a certain promoting effect. The result explains the transformation way of waste tire catalytic fast pyrolysis products to aromatic hydrocarbon, which is conducive to waste tyre pyrolysis of high value. The maximum throughput of 10 kg/h fluidized bed reactor, pyrolysis test of mixed raw materials. The actual CSW multistage condensation system from 38.4 to 56.5 wt% pyrolysis products, divided into aqueous phase and organic phase. Water soluble high water content, the main unit is divided into acids, carbonyl compounds, phenols and sugar, can be used after upgrading. The organic phase almost no water, mainly composed of aromatic hydrocarbons and phenols Class composition, and heavy metals Cd, Pb and Zn content is low, the fuel properties and crude oil are similar. Water soluble organic phase and a layered by grading for CSW pyrolysis oil, the two can be utilized by different ways. In addition to the pyrolysis oil, pyrolytic carbon and pyrolysis product can provide heat for pyrolysis by burning. Based on the experiment, the pyrolysis of CSW in fluidized bed was simulated. The simulation model of dual Euler multiphase flow, multicomponent, pyrolysis reaction model of CSW raw materials. The user defined function of heterogeneous reactions (UDF) program, the use of computational fluid mechanical (CFD) coupling calculation software. The simulation results show that with the increase of pyrolysis time, the fluidized bed tends to stable state flow, export product flow fluctuations in + 10% range. The effect of operating conditions on the yield of the simulation, it was found that the heat The solution temperature has the greatest influence on the product yield, and the initial bed height on product fluctuations most obvious. Compared with the experimental results, the simulation results and bed temperature distribution in the yield variation with temperature consistent with the results of.CSW during pyrolysis of CFD simulation results can provide valuable reference for the optimization of process design and operation.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:O643.12;O625.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱寶忠;程功;汪玉;許茂林;;中國廢輪胎回收利用現(xiàn)狀綜述[J];廣州化工;2014年09期
2 謝華清;于慶波;秦勤;張海濤;;生物質(zhì)熱解過程兩種動力學(xué)分析方法的比較[J];東北大學(xué)學(xué)報(自然科學(xué)版);2013年06期
3 柏繼松;余春江;吳鵬;方夢祥;駱仲泱;;熱重-紅外聯(lián)用分析垃圾衍生燃料的熱解特性[J];化工學(xué)報;2013年03期
4 張少龍;李斌;張飛躍;馬麗;韓艷華;范閩光;;金屬改性P/HZSM-5分子篩催化乙醇芳構(gòu)化[J];物理化學(xué)學(xué)報;2011年06期
5 宋薇;趙樹青;劉晶昊;蒲志紅;徐長勇;;垃圾焚燒煙氣中二惡英類污染物控制技術(shù)研究[J];環(huán)境衛(wèi)生工程;2011年01期
6 田賀忠;趙丹;王艷;;中國生物質(zhì)燃燒大氣污染物排放清單[J];環(huán)境科學(xué)學(xué)報;2011年02期
7 鄧立紅;肖領(lǐng)平;唐勇;宋先亮;;預(yù)處理對廢紙纖維素酶水解的影響[J];北京林業(yè)大學(xué)學(xué)報;2010年03期
8 孫宏偉;呂薇;李瑞揚;;生物質(zhì)燃燒過程中的堿金屬問題研究[J];節(jié)能技術(shù);2009年01期
9 孫萍萍;秦夢華;傅英娟;;關(guān)于廢紙制漿存在的幾個問題[J];上海造紙;2008年06期
10 白兆興;;生物質(zhì)鍋爐技術(shù)現(xiàn)狀與存在問題[J];工業(yè)鍋爐;2008年02期
相關(guān)博士學(xué)位論文 前3條
1 陸強(qiáng);生物質(zhì)選擇性熱解液化的研究[D];中國科學(xué)技術(shù)大學(xué);2010年
2 溫俊明;城市生活垃圾熱解特性試驗研究及預(yù)測模型[D];浙江大學(xué);2006年
3 李建新;垃圾焚燒過程重金屬污染物遷移機(jī)理及穩(wěn)定化處理技術(shù)研究[D];浙江大學(xué);2004年
,本文編號:1684853
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1684853.html