金屬納米簇催化劑催化性能調(diào)控的理論研究
本文選題:金屬納米簇 切入點(diǎn):催化性能 出處:《北京化工大學(xué)》2017年博士論文 論文類型:學(xué)位論文
【摘要】:金屬納米簇催化劑憑借其獨(dú)特的表面效應(yīng)、體積效應(yīng)和量子尺寸效應(yīng),展現(xiàn)了納米催化材料優(yōu)異的催化性能,廣泛應(yīng)用于化工領(lǐng)域中的低溫催化一氧化碳(CO)氧化、燃料電池反應(yīng)、低溫水煤氣轉(zhuǎn)換反應(yīng)和氮氧化物(NOx)催化分解等,被稱為第四代催化劑。形貌、尺寸、組成和原子排序都可以對(duì)金屬納米簇的催化性能進(jìn)行調(diào)控,使金屬合金納米簇的構(gòu)效關(guān)系及反應(yīng)機(jī)理變得更加復(fù)雜。除此之外,載體對(duì)催化劑催化性能的影響也是不容忽視的。本論文以質(zhì)子交換膜燃料電池(proton exchange membrane fuel cell, PEMFC)的氧還原反應(yīng)(oxygen reduction reaction,ORR)活性和抗CO中毒特性為出發(fā)點(diǎn),利用密度泛函理論(density functional theory, DFT)計(jì)算方法,研究了在PEMFC中,形貌、載體、組成和原子排序?qū)饘偌{米簇催化劑催化性能的影響和調(diào)控。主要研究的內(nèi)容和創(chuàng)新點(diǎn)如下:1、形貌對(duì)金屬納米簇催化劑催化性能的調(diào)控。用密度泛函理論計(jì)算方法研究了形貌結(jié)構(gòu)對(duì)金屬納米簇催化劑的催化性能的調(diào)控。首先根據(jù)金屬納米簇剩余能的大小,確定了具有不同形貌結(jié)構(gòu)的金屬納米簇催化劑的相對(duì)穩(wěn)定性;然后根據(jù)反應(yīng)物在金屬納米簇上的吸附能以及反應(yīng)能壘的大小確定了具有不同形貌結(jié)構(gòu)金屬納米簇催化劑的催化性能。主要研究了形貌對(duì)純Pt金屬納米簇和AuPd雙金屬納米簇的催化性能調(diào)控。(1)采用第一性原理的密度泛函理論計(jì)算方法,研究了形貌對(duì)Pt13團(tuán)簇ORR催化活性和抗CO中毒特性的調(diào)控。首先,計(jì)算了四種低對(duì)稱Pt13團(tuán)簇(Pt13-1和Pt13-4是Cs對(duì)稱,Pt13-2和Pt13-3是C2v對(duì)稱)和一種具有正二十面體(ICO)結(jié)構(gòu)的高對(duì)稱的Pt13-5 (Ih對(duì)稱)團(tuán)簇的剩余能,根據(jù)剩余能的大小確定了不同形貌結(jié)構(gòu)的Pt13團(tuán)簇的相對(duì)穩(wěn)定性。接著,研究CO,O2,O和OH在這五種不同形貌結(jié)構(gòu)的t13催化劑上的吸附能以及O2分子的解離能壘和不同反應(yīng)機(jī)理下CO分子氧化的反應(yīng)能壘。計(jì)算結(jié)果表明,Pt13-1和Pt13-2具有適宜(居中)的O和OH吸附能,、較低的O2分子解離能,所以,這兩個(gè)團(tuán)簇具有較高的ORR催化活性。在包含O2解離過程的LH反應(yīng)機(jī)理下,Pt13-1和Pt13-2兩個(gè)形貌結(jié)構(gòu)的Pt13團(tuán)簇催化CO氧化反應(yīng)的能壘也是最低的(0.2 eV)。綜合考慮,具有低對(duì)稱形貌的Pt13-1和Pt13-2這兩種Pt13團(tuán)簇?fù)碛凶詈玫腛RR催化活性和抗CO中毒特性。(2)通過密度泛函理論計(jì)算方法,研究了具有正二十面體(ICO)和截角八面體(TO)兩種不同形貌結(jié)構(gòu)的Au13, Au12Pd1,Pd12Au1和Pd13組成的四種AuPd雙金屬納米簇。剩余能的結(jié)果表明,對(duì)于富Pd的Pd13和Pd12Au1團(tuán)簇而言,ICO形貌結(jié)構(gòu)是相對(duì)穩(wěn)定的結(jié)構(gòu),而對(duì)于富Au的Au12Pd1和Au13團(tuán)簇而言,TO形貌結(jié)構(gòu)的是相對(duì)穩(wěn)定的結(jié)構(gòu)。O2吸附在具有ICO形貌結(jié)構(gòu)的Au13和Au12Pd1團(tuán)簇上時(shí),團(tuán)簇會(huì)由ICO結(jié)構(gòu)轉(zhuǎn)變成TO結(jié)構(gòu)。2、載體對(duì)金屬納米簇催化劑催化性能的調(diào)控。通過密度泛函理論對(duì)載體和催化劑的電子態(tài)密度(DOS)進(jìn)行分析,得到載體和催化劑之間存在電荷的轉(zhuǎn)移,也正是因?yàn)檫@種載體-催化劑體系內(nèi)的電荷轉(zhuǎn)移,使得載體可以調(diào)控金屬納米簇催化劑的催化性能。本論文主要研究了有無石墨烯負(fù)載的AuPd金屬納米團(tuán)簇和MgO(100)負(fù)載的AuPt金屬納米簇催化劑催化CO氧化的催化性能。(1)首先,通過計(jì)算Au13, Au12Pd1, Pd12Au1和Pd13這四種不同組成的裸露的AuPd雙金屬納米簇催化CO氧化的反應(yīng)能壘,得出Au12Pd1是最優(yōu)的CO氧化催化劑,反應(yīng)能壘是0.17 eV。然后,將Au12Pd1負(fù)載在單空位缺陷的石墨烯上,計(jì)算Au12Pd1金屬納米簇催化劑的穩(wěn)定性和催化CO氧化的活性。和裸露的Au12Pd1雙金屬納米簇催化劑進(jìn)行對(duì)比,結(jié)果表明,缺陷石墨烯負(fù)載的Au12Pd1催化劑雖然沒有提高催化CO氧化的活性(反應(yīng)能壘為0.41eV),但是提高了催化劑的穩(wěn)定性。借助DOS分析的結(jié)果,可以說明石墨烯載體與Au12Pd1催化劑之間的電荷轉(zhuǎn)移是催化劑穩(wěn)定性提高的根本原因。(2)計(jì)算了 MgO(100)負(fù)載的亞納米的PtxAu3-x金屬納米簇催化劑上CO 通過 Langmuir-Hinshelwood (LH), trimolecular Langmuir-Hinshe-lwood(3LH)和Eley-Rideal(ER)三種不同反應(yīng)機(jī)理反應(yīng)時(shí)的反應(yīng)能壘。結(jié)果表明,不同反應(yīng)機(jī)理下,PtxAu3-x/MgO金屬納米簇催化CO氧化的反應(yīng)活性高低的排序是不同,但綜合考慮這三種機(jī)理,Pt2Au1/MgO是最優(yōu)的CO氧化催化劑。電荷分析的結(jié)果表明,Pt2Au1/MgO具有高催化活性的根本原因是MgO載體與Pt2Au1團(tuán)簇間的電荷轉(zhuǎn)移的數(shù)量最為顯著。3、組成和原子序?qū)饘偌{米簇催化劑催化性能的調(diào)控。借助密度泛函理論,我們計(jì)算了不同組成下PdCu金屬納米簇的ORR反應(yīng)的活性以及抗CO中毒的特性。計(jì)算中,我們用O2分子的解離能以及O, OH和OOH三種含氧中間物的吸附能來評(píng)價(jià)PdCu雙金屬納米簇對(duì)ORR反應(yīng)的催化活性,用CO氧化反應(yīng)的反應(yīng)能壘來評(píng)價(jià)PdCu雙金屬納米簇的抗CO中毒特性。無論是ORR反應(yīng)還是CO氧化反應(yīng),O2分子的激活都是反應(yīng)進(jìn)行的關(guān)鍵,比例為50:50的Pd27Cu28團(tuán)簇對(duì)O2分子的吸附是最弱的,即最容易被激活。所以,在本論文的研究體系中,Pd27Cu28金屬納米簇同時(shí)具有最高的ORR催化活性和最強(qiáng)的抗CO中毒特性。同時(shí),我們研究了單一 Ni原子或者Co原子的化學(xué)序?qū)t基雙金屬/三金屬納米簇催化劑催化性能的調(diào)控。對(duì)于具有ICO結(jié)構(gòu)的Pt基金屬合金納米簇,單一 Ni或者Co原子有中心位置(core),次表層位置(subsurface),和兩種不同的表面位置(T1和T2)四種不同的占據(jù)位置。CO氧化反應(yīng)的反應(yīng)能壘表明,單一 Ni或者Co原子占據(jù)催化劑的中心位置時(shí),催化劑具有最高的催化活性,這與完美對(duì)稱的核殼結(jié)構(gòu)催化劑的高穩(wěn)定性是密不可分的。單一 Ni或者Co原子占據(jù)次表面次之,占據(jù)表面時(shí),催化劑具有最低的催化活性,這與不同原子序下金屬納米簇的穩(wěn)定性是正相關(guān)的,催化劑越穩(wěn)定,催化劑的活性越高。
[Abstract]:Metal nanocluster catalyst with its unique surface effect, volume effect and quantum size effect, show excellent catalytic properties of nano catalytic materials, catalytic carbon monoxide is widely used in chemical industry in the field of fuel cell (CO) oxidation reaction, low-temperature water gas conversion reaction and catalytic decomposition of nitrogen oxide (NOx), called as the fourth generation catalyst. The morphology, size, composition and atomic arrangement can be on the catalytic performance of metal nanoclusters of regulation, make the structure-activity relationship and reaction mechanism of metal alloy nanoclusters have become more complex. In addition, effect of support on catalytic performance can not be ignored. This paper based on proton exchange membrane fuel the battery (proton exchange membrane fuel cell, PEMFC) of the oxygen reduction reaction (oxygen reduction reaction, ORR CO) activity and anti poisoning characteristics as the starting point, using density functional theory (D Ensity functional theory, DFT) calculation method, based on PEMFC, morphology, carrier, composition and atomic arrangement effect on catalytic performance of metal nanocluster catalyst and control. The main research content and innovation are as follows: 1. The morphology control on the catalytic performance of metal nanocluster catalyst. The catalytic performance of regulation of morphology the metal nanocluster catalyst by density functional theory calculation method. According to the residual energy and the size of metal nanoclusters, determined the relative stability of metal nano cluster catalysts with different morphologies; then according to the reactant adsorption on the metal nanoclusters on energy and reaction energy barrier is determined by the size of the catalytic performance of structure different morphologies of metal nanocluster catalyst. The main study on catalytic performance regulation of pure Pt metal nanoclusters and AuPd bimetallic nanoclusters morphology (1) by the first. The calculation method of density functional theory principle, study the morphology control of Pt13 clusters ORR catalytic activity and resistance to CO poisoning characteristics. Firstly, four kinds of low symmetry Pt13 clusters were calculated (Pt13-1 and Pt13-4 is Pt13-2 and Pt13-3 is Cs symmetry, C2v symmetry) and a positive twenty surface (ICO) structure the high symmetry Pt13-5 (Ih symmetry) clusters according to the residual energy and residual energy, the size of the relative stability of Pt13 clusters with different morphologies were determined. Then, the research of CO, O2, O and OH adsorption dissociation in these five kinds of different structures on the T13 catalyst and O2 molecules can the reaction of CO oxidation and molecular reaction mechanism under different barrier barrier. The calculation results show that Pt13-1 and Pt13-2 have proper (centered) O and OH O2, the molecular dissociation adsorption energy, low energy, so the catalytic activity of ORR of the two clusters is higher. In the solution containing O2 from LH reaction mechanism in the process of Next, Pt13 clusters of CO oxidation catalyzed by Pt13-1 and Pt13-2 two the morphology and structure of the energy barrier is the lowest (0.2 eV). Considering the low symmetry morphology of Pt13-1 and Pt13-2 of the two Pt13 clusters of ORR has the best catalytic activity and anti poisoning characteristics. CO (2) by density functional the theoretical calculation method, the study has twenty surface body (ICO) and truncated eight surface (TO) of two different structures of Au13, Au12Pd1, Pd12Au1 and AuPd four Pd13 consisting of two metal nanoclusters. The remaining energy results show that for the Pd13 and Pd12Au1 clusters Pd rich, ICO morphology structure is relatively stable, while for Au12Pd1 and Au13 clusters of Au rich in terms of the structure and morphology of TO.O2 structure is relatively stable in the adsorption of Au13 and Au12Pd1 clusters with ICO structure on the morphology, clusters by ICO structure into TO structure of.2, carrier of metal nanoclusters catalyst The performance of control. Through the density of states of the density functional theory of the carrier and catalyst (DOS) analysis, obtained the charge transfer between the carrier and the catalyst, it is because of the charge carrier catalyst system in the transfer, the carrier can control metal catalytic performance of nano cluster catalyst was studied in this paper. There is no graphene supported AuPd metal nanoclusters and MgO (100) catalyzed CO AuPt metal nanocluster catalyst oxidation load. (1) first of all, through the calculation of Au13, Au12Pd1, Pd12Au1 and Pd13 of the four kinds of bare AuPd bimetallic cluster catalyst for CO oxidation reaction energy barrier that is, the Au12Pd1 CO catalysts for the oxidation of the optimal reaction barrier is 0.17 eV. and the Au12Pd1 load in the graphene single vacancy defects on the stability and catalytic oxidation of CO Au12Pd1 metal nano cluster catalyst The activity of comparison, and bare Au12Pd1 bimetallic cluster catalyst. The results showed that Au12Pd1 catalyst supported on graphene defects although not improve the catalytic activity of CO oxidation (reaction energy barrier of 0.41eV), but the stability of catalyst was improved. The results of DOS analysis, can explain the charge between graphene and Au12Pd1 carrier the catalyst transfer is the basic reason for the stability of the catalyst increased. (2) MgO (100) calculated load of sub nanometer PtxAu3-x metal nanocluster catalyst on CO by Langmuir-Hinshelwood (LH), trimolecular Langmuir-Hinshe-lwood (3LH) and Eley-Rideal (ER) three different reaction mechanism of the reaction barrier. The results show that different the reaction mechanism, reaction activity level of PtxAu3-x/MgO metal nanocluster catalytic CO oxidation sequencing is different, but considering the three kinds of mechanism, Pt2Au1/MgO is the best C O oxidation catalyst charge. Analysis results show that the main reason for the Pt2Au1/MgO with high catalytic activity is the most significant.3 is the number of Pt2Au1 clusters and MgO charge carrier transfer between the atomic composition and regulation on the catalytic performance of metal nanocluster catalyst. Using the density functional theory, we calculated the ORR reaction of PdCu metal nanoclusters the different component activity and characteristics of resistance to CO poisoning. In the calculation, we use O2 and O to the molecular dissociation, adsorption of OH and OOH three kinds of oxygen intermediates to evaluate the catalytic activity of PdCu bimetallic clusters on the ORR reaction, CO anti poisoning characteristics of CO oxidation reaction energy barrier to evaluate the PdCu bimetallic cluster. Either ORR or CO oxidation reaction, the activation of O2 molecules is the key of reaction, adsorption ratio of Pd27Cu28 cluster 50:50 of O2 molecule is the weakest, which is most likely to be stimulated Live. So, in the study system of this thesis, CO anti poisoning characteristics of Pd27Cu28 metal nanoclusters also has the highest catalytic activity of ORR and the strongest. At the same time, we studied the regulation of Pt based bimetallic nanoclusters / catalytic metal catalyst three can chemical order single Ni atom or Co atom for Pt. Base metal alloy nanoparticles with ICO structure, a single Ni or Co atom Center (core), surface position (subsurface), and two different surface sites (T1 and T2) of four different.CO occupy the position of the reaction barrier that single Ni or Co atoms occupy the center the position of catalyst, the catalyst has high catalytic activity, high stability of the core-shell structure catalyst and the perfect symmetry is inseparable. Single Ni or Co atoms occupy the second surface, occupy the surface, with the lowest catalytic catalyst The activity of the catalyst is positively related to the stability of the metal nanoclusters under different atomic sequence. The more stable the catalyst, the higher the activity of the catalyst.
【學(xué)位授予單位】:北京化工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:O643.36
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 饒艷英;錢衛(wèi)平;;有序金屬納米殼材料[J];化學(xué)進(jìn)展;2011年12期
2 滿石清;樊耘;湯俊琪;;帽狀金屬納米結(jié)構(gòu)的制備、性質(zhì)及應(yīng)用[J];暨南大學(xué)學(xué)報(bào)(自然科學(xué)與醫(yī)學(xué)版);2012年05期
3 ;世界首次利用金屬納米結(jié)構(gòu)的光納米成像技術(shù)[J];吉林農(nóng)業(yè)農(nóng)村經(jīng)濟(jì)信息;2006年02期
4 孟慶平,戎詠華,徐祖耀;金屬納米晶的相穩(wěn)定性[J];中國(guó)科學(xué)E輯:技術(shù)科學(xué);2002年04期
5 黃川;宋曉艷;魏君;韓清超;;金屬納米晶熱穩(wěn)定性的計(jì)算機(jī)仿真與實(shí)驗(yàn)研究[J];中國(guó)體視學(xué)與圖像分析;2008年03期
6 李志遠(yuǎn);李家方;;金屬納米結(jié)構(gòu)表面等離子體共振的調(diào)控和利用[J];科學(xué)通報(bào);2011年32期
7 金翼水;劉輔庭;;高功能性金屬納米纖維的制造及其性能評(píng)估[J];合成纖維;2011年10期
8 楊國(guó)楨;;評(píng)《金屬納米結(jié)構(gòu)表面等離子體共振的調(diào)控和利用》[J];科學(xué)通報(bào);2012年Z1期
9 黃敏;楊修春;趙建富;顧幸勇;梁華銀;錢士雄;;銀銅雙金屬納米晶玻璃復(fù)合材料光學(xué)三階非線性的研究[J];中國(guó)陶瓷工業(yè);2012年05期
10 張治平;張亞文;;可控形貌的雙金屬納米晶催化劑的研究進(jìn)展[J];大學(xué)化學(xué);2013年05期
相關(guān)會(huì)議論文 前10條
1 王仲玨;;金屬納米變質(zhì)技術(shù)新進(jìn)展[A];2010年中國(guó)鑄造活動(dòng)周論文集[C];2010年
2 李志遠(yuǎn);;金屬納米微結(jié)構(gòu)和顆粒的表面等離子體共振[A];中國(guó)光學(xué)學(xué)會(huì)2006年學(xué)術(shù)大會(huì)論文摘要集[C];2006年
3 黃川;宋曉艷;魏君;韓清超;;金屬納米晶熱穩(wěn)定性的計(jì)算機(jī)仿真與實(shí)驗(yàn)研究[A];第十二屆中國(guó)體視學(xué)與圖像分析學(xué)術(shù)會(huì)議論文集[C];2008年
4 李亞棟;;金屬納米催化[A];第六屆全國(guó)物理無機(jī)化學(xué)會(huì)議論文摘要集[C];2012年
5 李亞棟;;金屬納米催化[A];第十二屆固態(tài)化學(xué)與無機(jī)合成學(xué)術(shù)會(huì)議論文摘要集[C];2012年
6 宋曉艷;張久興;李乃苗;高金萍;楊克勇;劉雪梅;;金屬納米晶和納米粒子材料熱力學(xué)特性的模擬計(jì)算與實(shí)驗(yàn)研究[A];2005年全國(guó)計(jì)算材料、模擬與圖像分析學(xué)術(shù)會(huì)議論文集[C];2005年
7 王樹林;李生娟;杜妍辰;徐波;李來強(qiáng);朱巖;;金屬納米結(jié)構(gòu)的干法室溫大規(guī)模制備[A];第八屆全國(guó)顆粒制備與處理學(xué)術(shù)和應(yīng)用研討會(huì)論文集[C];2007年
8 吳炳輝;陳光需;代燕;鄭南峰;;貴金屬納米晶的表界面調(diào)控[A];第十二屆固態(tài)化學(xué)與無機(jī)合成學(xué)術(shù)會(huì)議論文摘要集[C];2012年
9 郭霞;張巧;葉偉;謝芳;趙清;楊劍;;金基納米棒的選擇性腐蝕制備新穎多金屬納米結(jié)構(gòu)[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第33分會(huì):納米材料合成與組裝[C];2014年
10 童明良;劉俊良;冷際東;郭鵬虎;;系列4f/3d-4f金屬納米分子磁體的組裝與磁-構(gòu)關(guān)系研究[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第8分會(huì)場(chǎng)摘要集[C];2012年
相關(guān)重要報(bào)紙文章 前6條
1 本報(bào)記者 危麗瓊;雙金屬納米簇催化劑“1+1>2”[N];中國(guó)化工報(bào);2013年
2 張巍巍;美開發(fā)出高度控制金屬納米結(jié)構(gòu)的方法[N];科技日?qǐng)?bào);2012年
3 記者 毛黎;碳納米管與金屬納米導(dǎo)線成功連接[N];科技日?qǐng)?bào);2007年
4 覃澤文;催化劑助氫氣輕松儲(chǔ)存[N];中國(guó)能源報(bào);2009年
5 仇國(guó)賢;原位晶化催化劑降物耗能耗[N];中國(guó)化工報(bào);2009年
6 特約記者 張曉君 蕭兵;科技創(chuàng)新降低能耗提高效率[N];中國(guó)石油報(bào);2011年
相關(guān)博士學(xué)位論文 前10條
1 孫明斐;異常一維金屬納米結(jié)構(gòu)彈性及塑性的分子動(dòng)力學(xué)模似表征[D];復(fù)旦大學(xué);2014年
2 李楠庭;石墨烯負(fù)載金屬納米結(jié)構(gòu)的制備及性能表征[D];南京大學(xué);2015年
3 宋瑋;多肽/金屬納米簇的制備及其用于生物分析檢測(cè)研究[D];南昌大學(xué);2015年
4 伍鐵生;基于金屬納米結(jié)構(gòu)的光傳輸特性及其應(yīng)用研究[D];北京郵電大學(xué);2015年
5 王超;Ir基貴金屬納米晶制備及其催化性質(zhì)研究[D];吉林大學(xué);2016年
6 武振楠;基于金屬納米點(diǎn)的超薄二維組裝結(jié)構(gòu)構(gòu)筑[D];吉林大學(xué);2016年
7 吳菲菲;金屬納米結(jié)構(gòu)的構(gòu)筑及其在傳感中的應(yīng)用[D];吉林大學(xué);2016年
8 程毅;液相基底表面金屬納米結(jié)構(gòu)形成機(jī)理的計(jì)算機(jī)模擬[D];浙江大學(xué);2016年
9 張亞芳;金屬納米結(jié)構(gòu)對(duì)染料分子和稀土離子光學(xué)性質(zhì)的調(diào)控[D];武漢大學(xué);2016年
10 馬宗偉;金屬納米棒陣列的三階光學(xué)非線性和光致發(fā)光特性研究[D];華中科技大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 祝國(guó)民;原位液體透射電鏡芯片的研發(fā)及基于此技術(shù)的貴金屬納米晶生長(zhǎng)和刻蝕研究[D];浙江大學(xué);2015年
2 倪媛;貴金屬納米結(jié)構(gòu)的可控合成及其光熱效應(yīng)研究[D];南京航空航天大學(xué);2015年
3 楊榮;貴金屬納米晶合成及其性能研究[D];浙江理工大學(xué);2015年
4 吳佳;基于金屬納米簇的光學(xué)分析方法研究[D];陜西師范大學(xué);2015年
5 趙婷;貴金屬納米結(jié)構(gòu)的消光特性研究[D];陜西師范大學(xué);2015年
6 蔡正杰;表面等離激元誘導(dǎo)的金屬納米寬單頻帶和窄多頻帶光透明特征研究[D];江西師范大學(xué);2015年
7 韓淑華;中空、多孔貴金屬納米結(jié)構(gòu)的構(gòu)筑及其機(jī)理、性能研究[D];溫州大學(xué);2015年
8 沈琪;金屬納米顆粒陣列的局域表面等離激元共振研究[D];南京大學(xué);2014年
9 王婧;金屬納米結(jié)構(gòu)在超寬帶電磁波中的局域增強(qiáng)特性及應(yīng)用研究[D];電子科技大學(xué);2014年
10 劉花;熒光性的金屬納米簇合成及傳感性能研究[D];浙江師范大學(xué);2015年
,本文編號(hào):1643629
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1643629.html