鐵基納米磷化物可控合成、結(jié)構(gòu)調(diào)控及其電催化產(chǎn)氫性能的研究
發(fā)布時間:2018-03-08 16:26
本文選題:三維有序大孔 切入點:FeP 出處:《內(nèi)蒙古大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:氫氣由于其清潔無污染的性質(zhì),被認(rèn)為是可以代替化石燃料的一種新型能源。電解水產(chǎn)氫被認(rèn)為是可以實現(xiàn)工業(yè)化生產(chǎn)氫氣的一種重要方式,但是電解水產(chǎn)氫的催化劑卻成為了其實現(xiàn)工業(yè)化的一個難點。相對于其他過渡金屬,Fe元素在地球上的含量最多,因此,利用Fe來做電化學(xué)產(chǎn)氫的催化劑是最為經(jīng)濟(jì)有效的。FeP以其優(yōu)異的電催化析氫性能,受到研究人員廣泛的關(guān)注,成為當(dāng)前研究的熱點。研究表明,通過提高FeP的電化學(xué)活性表面積或降低FeP的電阻、摻雜非金屬陰離子或金屬陽離子均可以有效的提高催化劑的產(chǎn)氫活性;诖,本文構(gòu)筑了三類具有特殊形貌和結(jié)構(gòu)的3DOMFeP、3DOMSe摻雜FeP和中空FeCoP納米電催化劑,通過結(jié)構(gòu)、組成、尺寸和形貌、比表面積和表面特性的優(yōu)化,極大地提升了這些催化劑的電催化產(chǎn)氫性能,獲得了具有一定應(yīng)用潛力的系列電催化產(chǎn)氫催化劑。本文具體研究內(nèi)容如下:本文第一章對電催化產(chǎn)氫研究進(jìn)展以及電催化產(chǎn)氫催化劑進(jìn)行了綜述,重點介紹了過渡金屬磷化物電化學(xué)催化劑的研究進(jìn)展。本文第二章本章以聚苯乙烯(PS)微球為模板,通過離心方法將其組裝構(gòu)筑了 PS微球交替晶體模板,隨后以無水乙醇為溶劑,將Fe(NO3)3為前驅(qū)體溶液填充于PS微球交替晶體模板空隙,經(jīng)600℃鍛燒,獲得具有規(guī)則三維有序大孔結(jié)構(gòu)的3DOMFe2O3。以次磷酸鈉為磷源,在不同溫度下對3DOMFe2O3進(jìn)行了磷化處理,獲得了系列3DOM FeP,并通過XRD、SEM、TEM、STEM、BET和XPS等表征手段,對其相態(tài)、結(jié)構(gòu)、尺寸、形貌、比表面與孔結(jié)構(gòu)、表面元素組成與價態(tài)等進(jìn)行了詳細(xì)的分析,系統(tǒng)評價了 3DOM FeP催化劑的電催化析氫性能。本文第三章以3DOMFe20O為前驅(qū)體,以次磷酸鈉為磷源,通過在磷化過程中添加Se粉和控制磷化溫度,制備了系列3DOMSe摻雜FeP催化劑,通過調(diào)控Se粉與次磷酸鈉的比例,成功將Se摻入FeP晶格。通過XRD、SEM、TEM和XPS等表征手段對所得3DOM Se摻雜FeP的相態(tài)、結(jié)構(gòu)、尺寸和形貌、表面特性等進(jìn)行了系統(tǒng)研究,并利用線性掃描伏安、循環(huán)伏安和交流阻抗等電化學(xué)測試方法對3DOM Se摻雜FeP催化劑的電催化析氫性能進(jìn)行了研究。本文第四章以Cu2O為模板、NaS2O3為刻蝕劑,通過調(diào)整Co和Fe前驅(qū)體的比例,首先合成中空納米盒形貌的FeCo(OH)2,再通過高溫磷化方法合成系列中空盒裝FeCoP催化劑。通過XRD、SEM、TEM和XPS等表征手段對所得3DOM Se摻雜中空FeCoP的相態(tài)、結(jié)構(gòu)、尺寸和形貌、表面特性等進(jìn)行了系統(tǒng)研究,并利用線性掃描伏安、循環(huán)伏安和交流阻抗等電化學(xué)測試方法對中空FeCoP催化劑的電催化析氫性能進(jìn)行了研究。本文第五章對全文進(jìn)行了總結(jié),并對未盡研究工作和進(jìn)一步探索進(jìn)行了展望。
[Abstract]:Because of its clean and pollution-free nature, hydrogen is considered to be a new energy source that can replace fossil fuels. Electrolytic hydrogen in aquatic products is considered to be an important way to produce hydrogen in an industrial way. However, the catalyst for electrolytic hydrogen in aquatic products has become a difficult point in industrialization. Compared with other transition metals, Fe is the most abundant on earth, so, Using Fe as the catalyst for electrochemical hydrogen production is the most economical and effective catalyst for hydrogen evolution by electrocatalysis. It has been widely concerned by researchers and has become a hot research topic at present. By increasing the electrochemical active surface area of FeP or reducing the resistance of FeP, doping of nonmetallic anions or metal cations can effectively improve the hydrogen-producing activity of the catalyst. In this paper, three kinds of 3DOMFeP- 3DOMSe doped FeP and hollow FeCoP nanocrystalline electrocatalysts with special morphology and structure were constructed. The structure, composition, size and morphology, specific surface area and surface properties of the catalysts were optimized. This greatly improves the hydrogen production performance of these catalysts. A series of electrocatalytic catalysts for hydrogen production have been obtained with some potential applications. The main contents of this paper are as follows: in the first chapter, the research progress of electrocatalytic hydrogen production and the electrocatalytic hydrogen production catalysts are reviewed. In chapter 2, PS microspheres were used as templates, and PS microspheres were assembled by centrifugal method to form alternative crystal templates of PS microspheres. Then, with anhydrous ethanol as solvent, Fe(NO3)3 as precursor solution was filled in PS microspheres alternate crystal template voids. After calcined at 600 鈩,
本文編號:1584672
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1584672.html
最近更新
教材專著