基于TDLAS平衡差分技術(shù)的CO氣體檢測(cè)
發(fā)布時(shí)間:2018-02-09 17:33
本文關(guān)鍵詞: 可調(diào)諧半導(dǎo)體激光吸收光譜 平衡差分技術(shù) CO檢測(cè) 出處:《光譜學(xué)與光譜分析》2017年10期 論文類(lèi)型:期刊論文
【摘要】:利用可調(diào)諧半導(dǎo)體激光吸收光譜(TDLAS)結(jié)合平衡差分探測(cè)技術(shù)測(cè)量了1.578μm附近的CO氣體3-0帶P(4)躍遷在不同壓強(qiáng)和不同濃度下的吸收光譜信號(hào)。由于平衡差分探測(cè)方法可以有效地抑制激光光強(qiáng)波動(dòng)、溫度漂移和機(jī)械振動(dòng)等共模噪聲,從而提高了光譜探測(cè)靈敏度。通過(guò)與直接吸收信號(hào)相比,平衡差分的信噪比提高了3.4倍,探測(cè)極限為87ppmv。測(cè)量了濃度為1%壓強(qiáng)為40,55,70和85Torr時(shí)的CO氣體,結(jié)果顯示在70Torr時(shí)其光譜信號(hào)最強(qiáng)。并且,利用直接吸收和平衡差分技術(shù)測(cè)量了不同濃度的CO氣體在總壓強(qiáng)在70Torr時(shí)的光譜信號(hào),發(fā)現(xiàn)平衡差分技術(shù)光譜強(qiáng)度與濃度的關(guān)系線(xiàn)性度符合較好,其測(cè)量誤差小于5%。為了進(jìn)一步驗(yàn)證系統(tǒng)的穩(wěn)定性,連續(xù)采集了324s的光譜信號(hào),最后通過(guò)Allan方差分析,發(fā)現(xiàn)本實(shí)驗(yàn)系統(tǒng)的最佳探測(cè)時(shí)間為38s,探測(cè)極限為47.8ppmv。
[Abstract]:The absorption spectra of CO gas in the vicinity of 1.578 渭 m in 3-0 band Pn4) have been measured by TDLAS-TDLAS-TDLAS-balanced differential detection technique. The absorption spectra of the transition at different pressures and concentrations have been measured. The balanced differential detection method can be used to detect the absorption spectra. In order to effectively suppress the fluctuation of laser light intensity, The common mode noise such as temperature drift and mechanical vibration improves the sensitivity of spectral detection. Compared with the direct absorption signal, the signal-to-noise ratio of the balanced differential signal is 3.4 times higher than that of the direct absorption signal. The detection limit is 87ppmv. the CO gas at the concentration of 1% pressure of 40,550.70 and 85Torr has been measured. The results show that the spectral signal is the strongest at 70Torr. The spectral signals of CO gas with different concentrations at 70 Torr were measured by direct absorption and equilibrium differential technique. It was found that the linear relationship between the spectral intensity and the concentration of CO was in good agreement with the equilibrium differential technique. The measurement error is less than 5. In order to further verify the stability of the system, the spectral signals of 324 s are collected continuously. Finally, by Allan variance analysis, it is found that the optimal detection time and detection limit of the system are 38 s and 47.8 ppmv.
【作者單位】: 太原科技大學(xué)應(yīng)用科學(xué)學(xué)院;中北大學(xué)電子檢測(cè)技術(shù)重點(diǎn)實(shí)驗(yàn)室;
【基金】:國(guó)家自然科學(xué)基金項(xiàng)目(11504256,U1610117,61573323) 中國(guó)科學(xué)院時(shí)間頻率基準(zhǔn)重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金項(xiàng)目 精密光譜科學(xué)與技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題 山西省高等學(xué)?萍紕(chuàng)新項(xiàng)目(2014146) 晉城市科技攻關(guān)項(xiàng)目(201501004-22)資助
【分類(lèi)號(hào)】:O657.3
,
本文編號(hào):1498482
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1498482.html
最近更新
教材專(zhuān)著