氣溶膠對降水系統(tǒng)影響的觀測研究
發(fā)布時間:2018-06-21 18:30
本文選題:氣溶膠 + 云降水系統(tǒng); 參考:《中國氣象科學(xué)研究院》2016年碩士論文
【摘要】:氣溶膠-云-降水相互作用是目前天氣和氣候模式中最大的不確定性因子之一。本研究利用長期的三維立體氣溶膠-云-降水多源觀測數(shù)據(jù)、再分析數(shù)據(jù)、以及地面觀測數(shù)據(jù)集探究了氣溶膠對降水的影響。在詳細討論降水系統(tǒng)的時空分布特性及其與大氣環(huán)流系統(tǒng)中動力、熱力因子強迫的關(guān)系的基礎(chǔ)上,試圖尋找氣溶膠影響云降水系統(tǒng)垂直結(jié)構(gòu)的觀測證據(jù),從而提高我們對氣溶膠間接效應(yīng)的認識。主要研究了如下三方面內(nèi)容:首先,基于2001-2012年MODIS獲取的青藏高原積雪面積比例(SCF)數(shù)據(jù),利用統(tǒng)計方法分析了SCF時空分布特征及其變化趨勢。發(fā)現(xiàn)每年10月至次年4月是青藏高原持續(xù)性積雪較多的月份,其中2月持續(xù)性積雪面積最大,7月最低;且其年平均持續(xù)性積雪面積呈3年左右的周期振蕩;不同海拔、坡度、坡向的SCF呈現(xiàn)不同的季節(jié)變化特征;2007-2012年TRMM衛(wèi)星上搭載的降水雷達產(chǎn)品,給出了全球熱帶海洋地區(qū)淺對流單體、層云、對流云降水系統(tǒng)對區(qū)域累積降水面積以及區(qū)域累積降水量貢獻率的空間分布情況。發(fā)現(xiàn)熱帶海洋地區(qū)平均降水率的時空分布與400hPa垂直速度(ω400hPa)的時空分布存在一個顯著的負相關(guān);4個子研究區(qū)內(nèi)區(qū)域累積降水面積貢獻率以層云降水為主,對流云降水次之,累積降水量貢獻率則以對流云降水為主,層云降水次之;對流云降水雨頂高度、雷達反射率重心以及30dBZ回波頂高隨ω400hPa/850hPa相對濕度(RH850hPa)的下降/增加有一個明顯抬升,隨下對流層穩(wěn)定度(LTS)的減小也略有抬升,說明ω400hPa和RH850h Pa與對流云降水系統(tǒng)垂直結(jié)構(gòu)的發(fā)展有密切關(guān)系。其次,利用TRMM 3B42降水率數(shù)據(jù),結(jié)合時空匹配的MODIS/Aqua提供的AOD數(shù)據(jù),計算了全球熱帶海洋地區(qū)平均降水率隨AOD的變化規(guī)律,深入分析了不同氣象條件下不同類型降水對氣溶膠的響應(yīng)。我們發(fā)現(xiàn),受輸送影響,赤道地區(qū)大陸周圍海域存在一個AOD高值區(qū)(類似于降水分布);降水率隨AOD的增加呈現(xiàn)一個先增加后減小的趨勢,該變化獨立于氣象條件而存在;相應(yīng)降水率峰值點對應(yīng)的AOD約為0.4,但受到氣象條件的影響;氣象因素(尤其是ω400hPa和RH850h Pa)對降水變率的影響是主要的,氣溶膠的影響是次要的,但也是不可忽略的。最后,為了更好地探究氣溶膠影響降水的微物理過程,我們以珠三角地區(qū)(22°N-24°N,113°E-115°E)為例,結(jié)合衛(wèi)星雷達數(shù)據(jù)、ECMWF再分析數(shù)據(jù)與地面觀測PM10質(zhì)量濃度數(shù)據(jù),在不同氣象條件下深入探究了氣溶膠對降水垂直結(jié)構(gòu)的影響,以期獲得氣溶膠影響降水的直接觀測證據(jù)。分析結(jié)果表明:在大氣由清潔轉(zhuǎn)為輕度污染的條件下(PM1045μg/m3):淺對流單體降水系統(tǒng)無明顯變化;層云以及對流云降水系統(tǒng)的雷達反射率因子大值區(qū)隨PM10濃度的增加迅速增大。在大氣由清潔轉(zhuǎn)為重度污染的條件下:淺對流單體降水和層云降水傾向于較弱降水過程的發(fā)生發(fā)展,且其30dBZ回波頂高較低;但較強的對流降水呈現(xiàn)出進一步增強的穩(wěn)定趨勢,且其30dBZ回波頂高較高?傮w來說,氣溶膠對淺云和層云降水呈現(xiàn)一個抑制效應(yīng),而對對流降水呈現(xiàn)一個明顯的促進作用。最后,討論了不同氣象條件下(上升氣流、風(fēng)切變、下對流層穩(wěn)定度、水汽通量散度)氣溶膠對降水的影響,未對上述結(jié)論產(chǎn)生顛覆性影響,進一步支持了上述觀測現(xiàn)象確是由于氣溶膠影響了降水系統(tǒng)所致。
[Abstract]:Aerosol cloud precipitation interaction is one of the largest uncertainties in the current weather and climate models. This study uses long-term three-dimensional aerosol cloud precipitation multisource observation data, reanalysis data, and ground observation data sets to explore the effects of aerosol on precipitation. The temporal and spatial distribution of precipitation systems is discussed in detail. On the basis of its relationship with the dynamic and thermal factor forcing in the atmospheric circulation system, we try to find the observation evidence that aerosol affects the vertical structure of the cloud precipitation system, thus improving our understanding of the indirect effect of the aerosol. The following three aspects are mainly studied: first, the snow surface of the Qinghai Tibet Plateau obtained on the basis of 2001-2012 year MODIS The SCF data is used to analyze the spatial and temporal distribution characteristics of SCF and its variation trend. It is found that every year from October to April the following year is the month of continuous snow accumulation on the Qinghai Tibet Plateau, in which the maximum snow area in February is the largest and the lowest in July; and the annual average snow area of the Qinghai Tibet Plateau is 3 years of periodic oscillation; On the basis of the precipitation radar products on the 2007-2012 year TRMM satellite, the spatial distribution of the spatial distribution of the cumulative precipitation area and the cumulative precipitation in the region of the global tropical ocean area is given, based on the precipitation radar products carried on the 2007-2012 year TRMM satellite. There is a significant negative correlation between the spatial and temporal distribution of precipitation rate and the spatial and temporal distribution of the 400hPa vertical velocity (omega 400hPa); the contribution rate of accumulated precipitation area in the 4 sub areas is dominated by stratigraphic precipitation, second to the convective cloud precipitation, and the cumulative precipitation contribution rate is mainly to the convective cloud precipitation, and the precipitation top height of the convective clouds, thunder and rain. The center of gravity of the reflectivity and the height of the 30dBZ echo have a distinct uplift with the decrease / increase of the relative humidity of the Omega 400hPa/850hPa (RH850hPa), with the decrease of the lower tropospheric stability (LTS) and a slight uplift, indicating that the Omega 400hPa and RH850h Pa are closely related to the vertical structure of the convective cloud precipitation system. Secondly, the 3B42 precipitation rate data of TRMM is used. Combined with the AOD data provided by the spatio-temporal matching MODIS/Aqua, the variation of the average precipitation rate with the AOD in the global tropical marine area is calculated. The response of different types of precipitation to the aerosol under different weather conditions is deeply analyzed. We find that there is a high value area (similar to water reduction) in the continental circumference of the equatorial region under the influence of the different weather conditions. The precipitation rate increased first and then decreased with the increase of AOD, which was independent of meteorological conditions; the corresponding AOD of corresponding precipitation rate was about 0.4, but influenced by meteorological conditions; the influence of meteorological factors (especially Omega 400hPa and RH850h Pa) on precipitation variability was main, and the effect of aerosol was secondary, But in the end, in order to better explore the microphysical process of aerosol affecting precipitation, we take the Pearl River Delta region (22 N-24 N, 113 E-115 E) as an example, combined with satellite radar data, ECMWF reanalysis data and ground observation PM10 mass concentration data, and explore the aerosol vertical precipitation perpendicular to the precipitation under different weather conditions. The results show that there is no obvious change in the shallow convective monomer precipitation system in the atmosphere from cleanliness to mild pollution (PM1045 mu g/m3), and the large value area of radar anti ejection factor in the stratigraphic and convective cloud precipitation system increases rapidly with the increase of PM10 concentration. In the atmosphere from cleanliness to severe pollution, shallow convective mono precipitation and stratigraphic precipitation tend to develop in weaker precipitation process, and its 30dBZ echo top is low, but the strong convective precipitation shows a further enhancement trend, and its 30dBZ echo top is high. Generally speaking, aerosol to Asabu Wa stratiform precipitation In the end, the effects of aerosols on precipitation are discussed under different weather conditions (updraft, wind shear, lower troposphere stability, and water vapor flux divergence), which do not have a subversive effect on the above conclusion, and further support the above observation phenomenon due to gas. The sols affect the precipitation system.
【學(xué)位授予單位】:中國氣象科學(xué)研究院
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:P426.6;X513
【參考文獻】
相關(guān)期刊論文 前4條
1 王革麗;楊培才;劉傳熙;劉毅;呂達仁;;Impacts of Future NO_x and CO Emissions on Regional Chemistry and Climate over Eastern China[J];Advances in Atmospheric Sciences;2010年04期
2 韓永翔;陳勇航;方小敏;趙天良;;沙塵氣溶膠對塔里木盆地降水的可能影響[J];中國環(huán)境科學(xué);2008年02期
3 傅云飛,林一驊,劉國勝,王強;TRMM測雨雷達對1998年東亞降水季節(jié)性特征的研究(英)[J];Advances in Atmospheric Sciences;2003年04期
4 周秀驥,李維亮,羅云峰;中國地區(qū)大氣氣溶膠輻射強迫及區(qū)域氣候效應(yīng)的數(shù)值模擬[J];大氣科學(xué);1998年04期
,本文編號:2049617
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/2049617.html
最近更新
教材專著