天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 環(huán)境工程論文 >

粉末活性炭—膜生物反應(yīng)器處理含鐵、含錳、含氨氮地下水研究

發(fā)布時(shí)間:2018-01-12 21:23

  本文關(guān)鍵詞:粉末活性炭—膜生物反應(yīng)器處理含鐵、含錳、含氨氮地下水研究 出處:《哈爾濱工業(yè)大學(xué)》2015年碩士論文 論文類型:學(xué)位論文


  更多相關(guān)文章: MBR 鐵錳氨氮共同去除 地下水 膜污染 高通量測(cè)序


【摘要】:地下水中同時(shí)含鐵、含錳和含氨氮是一個(gè)較普遍的問題,鐵、錳和氨氮的污染對(duì)人類飲用水的健康造成了一定的威脅。本文針對(duì)哈爾濱某地地下水源水含鐵、錳、氨氮(Mn2+=1.0 mg/L,Fe2+=15 mg/L,NH4+-N=1.8 mg/L)的特點(diǎn),構(gòu)建粉末活性炭-膜生物反應(yīng)器(PAC-MBR)對(duì)此種水進(jìn)行去除效能及膜污染研究。為了考查PAC-MBR的抗污染負(fù)荷,本試驗(yàn)研究MBR采用三種進(jìn)水,一種是地下水原水,另外兩種是不同曝氣量(DO為9 mg/L和6 mg/L)情況下接觸氧化生物濾池出水。首先,考查溶解氧分別為9 mg/L和6 mg/L時(shí)接觸氧化砂濾池鐵、錳、氨氮的出水效果,明確PAC-MBR進(jìn)水生物濾池控制參數(shù)。試驗(yàn)結(jié)果表明,在溶解氧為9mg/L時(shí),濾柱成熟后,鐵、錳、氨氮的出水濃度分別低于0.12 mg/L、0.1 mg/L、0.02 mg/L;在溶解氧為6 mg/L的濾柱,鐵、錳、氨氮的出水濃度分別為0.15 mg/L、0.2 mg/L和1.0 mg/L。其次,PAC-MBR系統(tǒng)處理不同含量的鐵、錳、氨氮進(jìn)水時(shí),在進(jìn)水為濾后水的兩個(gè)膜池中分別投加PAC為1 g/L和4 g/L,在進(jìn)水為原水的膜池中投加PAC為2 g/L。3個(gè)系統(tǒng)中,錳的出水都能達(dá)到0.05 mg/L,氨氮達(dá)到0.02 mg/L,在進(jìn)水為濾后水的兩個(gè)系統(tǒng)鐵出水低于0.08 mg/L,進(jìn)水為原水的系統(tǒng)鐵出水低于0.15 mg/L;钚蕴客读康脑黾訒(huì)縮減除鐵、除錳成熟期,從45天到40天,對(duì)除氨氮沒有影響,污染物濃度的增加會(huì)增加除鐵、除錳、除氨氮的成熟期,分別從48天到45天、50天到45天、35天到20天,且最終出水鐵穩(wěn)定濃度會(huì)受到進(jìn)水污染物濃度的影響,進(jìn)水為源水和濾后水的出水鐵為0.15 mg/L和0.05 mg/L。此外,在膜污染方面,經(jīng)過長(zhǎng)達(dá)222天的連續(xù)運(yùn)行發(fā)現(xiàn),變換進(jìn)水的單一系統(tǒng)中(PAC投量為2 g/L的系統(tǒng)),污染物濃度的升高(由砂濾出水變?yōu)榈叵滤?,跨膜壓差增長(zhǎng)迅速,在0-140天里跨膜壓差增長(zhǎng)了9.1 k Pa,在140-222天共82天里增長(zhǎng)了32.6 k Pa;不同粉末活性炭投加量(1 g/L和4 g/L)的系統(tǒng)處理砂濾出水時(shí),在0-140天增加了8.1 k Pa,在140-222天共82天增加了16.5 k Pa,在PAC投量為4 g/L的系統(tǒng),在0-140天增加了6.7 k Pa,在140-22天共82天增加了3.7 k Pa,PAC投加量增加,膜污染減輕;比較PAC-MBR系統(tǒng)中PAC投量和污染物濃度的比率,PAC投量多(4 g/L),污染物物濃度低(濾后水)的系統(tǒng)膜污染最輕,PAC投加量少(1 g/L),污染物濃度低(濾后水)和PAC投加量較少(2 g/L),污染物濃度高(原水)的系統(tǒng)膜污染均比較嚴(yán)重。而且,本文采用高通量測(cè)序?qū)τ诮佑|氧化砂濾柱在溶解氧分別為9 mg/L和6 mg/L條件下的錳砂和PAC-MBR系統(tǒng)中PAC投量為4 g/L和2 g/L的膜表面以活性炭為主的沉積物進(jìn)行分析,發(fā)現(xiàn)4個(gè)樣品中均出現(xiàn)了已知的鐵錳細(xì)菌和硝化細(xì)菌,其中在砂濾柱中Hyphomicrobium(生絲微菌屬)、Flavobacterium(黃桿菌屬)和Planctomyces(浮霉?fàn)罹鷮?、Nitrosomonas(亞硝化單胞菌屬)為優(yōu)勢(shì)菌種,在PAC-MBR系統(tǒng)中Pseudomonas(假單胞菌屬)、Nitrospira(硝化螺菌屬)和Leptothrix(纖發(fā)菌屬)為優(yōu)勢(shì)菌種。
[Abstract]:The contamination of iron, manganese and ammonia nitrogen in groundwater is a common problem. The pollution of iron, manganese and ammonia nitrogen has posed a certain threat to the health of human drinking water. Manganese, ammoniacal nitrogen, mn _ 2, 1.0 mg 路L ~ (-1) Fe _ (2), 15 mg / L ~ (-1) NH _ 4-N ~ (1. 8 mg 路L ~ (-1)). PAC-MBR was constructed to study the removal efficiency and membrane fouling of this kind of water in order to investigate the anti-fouling load of PAC-MBR. In this experiment, three kinds of influent were used in MBR, one was groundwater raw water, the other two were contact oxidized biofilter effluent with different aeration amount of 9 mg/L and 6 mg / L. The effluent effects of iron, manganese and ammonia nitrogen in contact with oxidized sand filter were investigated when dissolved oxygen was 9 mg/L and 6 mg/L, respectively, and the control parameters of PAC-MBR influent biofilter were determined. When the dissolved oxygen is 9 mg / L, the effluent concentrations of Fe, mn and NH _ 3-N are lower than 0.12 mg / L ~ (0.1 mg / L ~ (-1)) and 0.02 mg / L respectively when the filter column is mature. When the dissolved oxygen is 6 mg/L, the effluent concentration of Fe, mn and NH3-N is 0. 15 mg / L ~ 0. 2 mg/L and 1. 0 mg 路L ~ (-1) 路L ~ (-1), respectively. When different contents of iron, manganese and ammonia nitrogen were treated by PAC-MBR system, the PAC was 1 g / L and 4 g / L respectively in the two membrane ponds in which the influent was filtered. In the membrane tank with PAC of 2 g / L.3, the effluent of manganese can reach 0. 05 mg / L and ammonia nitrogen can reach 0. 02 mg/L. When the influent is filtered, the iron effluent is less than 0.08 mg / L, and the influent is lower than 0.15 mg 路L ~ (-1). The increase of activated carbon dosage will reduce the iron removal and manganese removal maturity period. From 45 days to 40 days, there was no effect on ammonia nitrogen removal. The increase of pollutant concentration would increase the maturation period of iron removal, manganese removal and ammonia nitrogen removal, from 48 days to 45 days, 50 days to 45 days and 35 days to 20 days, respectively. And the final effluent iron stability concentration will be affected by the influent pollutant concentration, the influent source water and filtered water effluent iron is 0. 15 mg/L and 0. 05 mg / L. in addition, in the membrane fouling. After 222 days of continuous operation, it was found that the concentration of pollutants increased (from sand filtered water to groundwater raw water) in the system with 2 g / L PAC in the single system. The transmembrane pressure difference increased rapidly from 0-140 days to 9.1 KPA, and from 140-222 days to 82 days, it increased by 32.6 KPA. The sand filtration system with different powder activated carbon dosages of 1 g / L and 4 g / L increased 8.1 KPA in 0-140 days. In 140-222 days, there was an increase of 16.5kPa in 82 days, and 6.7 KPA in the system with PAC dosage of 4 g / L in 0-140 days. In 140-22 days, the dosage of PAC was increased and the membrane fouling was reduced. Compared with the ratio of PAC dosage to pollutant concentration in PAC-MBR system, the membrane fouling of the system with low pollutant concentration (filtered water) was the least. The membrane fouling of the system with low dosage of PAC, low concentration of pollutants (filtered water) and less dosage of PAC, and high concentration of pollutants (raw water) were serious. In this paper, high throughput sequencing was used to determine the PAC dosages of 4 g / L and 2 g / L in manganese sand and PAC-MBR system with dissolved oxygen of 9 mg/L and 6 mg/L, respectively. The membrane surface of g / L was analyzed by activated carbon sediment. The known ferromanganese bacteria and nitrifying bacteria were found in the four samples, among which Hyphomicrobium was found in the sand filter column. Flavobacterium (Flavobacterium) and Planctomyces (Flavobacterium) and Planctomyces (Nitrosomonas) were the dominant species. Pseudomonas (Pseudomonas) and Leptothrix were dominant strains in PAC-MBR system.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:X523;TU991.2

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 尹雅芳;劉德深;李晶;苗迎;吳旺發(fā);;中國地下水污染防治的研究進(jìn)展[J];環(huán)境科學(xué)與管理;2011年06期

2 黃冠星;孫繼朝;荊繼紅;汪珊;杜海燕;劉景濤;陳璽;張玉璽;狄效斌;支兵發(fā);;珠江三角洲地區(qū)地下水鐵的分布特征及其成因[J];中國地質(zhì);2008年03期

3 文冬光;林良俊;孫繼朝;張兆吉;姜月華;葉念軍;費(fèi)宇紅;錢永;龔建師;周迅;張玉璽;;中國東部主要平原地下水質(zhì)量與污染評(píng)價(jià)[J];地球科學(xué)(中國地質(zhì)大學(xué)學(xué)報(bào));2012年02期

4 李冬,楊宏,張杰;首座大型生物除鐵除錳水廠的實(shí)踐[J];中國工程科學(xué);2003年07期

5 曾輝平;李冬;高源濤;趙焱;李燦波;張杰;;生物除鐵除錳濾層的溶解氧需求及消耗規(guī)律研究[J];中國給水排水;2009年21期

6 陳正清,別東來,鐘俊;不同濾料除鐵除錳效果研究[J];環(huán)境保護(hù)科學(xué);2005年03期

7 劉清海;浩良河水泥廠高含鐵地下水凈化設(shè)計(jì)小結(jié)[J];給水排水;1996年07期

8 周鵬;;地下水中鐵和錳的危害及去除方法[J];山西建筑;2008年23期

9 謝江寧;閻喜武;;總氨對(duì)水生生物毒性的研究進(jìn)展[J];科學(xué)養(yǎng)魚;2008年08期

10 王振興;王鶴立;李向全;侯新偉;劉玲霞;;地下水除鐵除錳技術(shù)研究進(jìn)展[J];環(huán)境工程;2012年S2期

,

本文編號(hào):1416068

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/1416068.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f6c27***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com