火星大氣進(jìn)入段軌跡設(shè)計(jì)和制導(dǎo)方法研究
[Abstract]:With the development of the Mars exploration mission, the surface sampling of Mars and the manned landing of Mars have been the target of the new stage of the future exploration of Mars, and the landing accuracy of the detector is the key factor for the success of the fire detection task. The effective guidance and control at the air entering stage is one of the necessary and important technical means to improve the landing precision of the lander, so the related technology and the theory of the Mars detector in the atmospheric entry section are deeply studied. The design of a reasonable trajectory and high-precision guidance system for the entry of the Mars atmosphere has become the focus of the current Mars research. Based on the "Research on the Precision Landing and Guidance Control of the Planetary Surface" of the 973 Project of the Ministry of Science and Technology and the "Research on the Autonomous Navigation Method for Planetary Landing" of the National Natural Science Foundation of China, the paper systematically studies the trajectory design and the key technology of the guidance of the trajectory design and guidance of the Martian detector, and the main research results are as follows: The trajectory design of the Mars probe in the atmosphere is studied. Based on the dynamic model of the atmosphere entering section of Mars, the various error sources that influence the state of the open-and-open point of the detector are analyzed by using the Monte-Carlo method. The results show that the influence of the atmospheric density and the uncertainty of aerodynamic parameters on the accuracy of the trajectory opening point is great. In order to reduce the influence of these error sources on the accuracy of the open-loop point, the uncertainty of the atmospheric density and the aerodynamic parameters is added to the trajectory design as the first-order homogeneous ordinary differential equation and combined with the mission characteristics of the Mars lander during the atmospheric entry phase, A new robust performance index is constructed, and a robust trajectory design method based on state sensitivity is proposed. The trajectory of the optimal control problem corresponding to the method obviously reduces the sensitivity of various error sources. The influence of various error factors on the state of the umbrella point is analyzed quantitatively by using the linear covariance analysis method, and a robust trajectory design method based on the covariance analysis is proposed. The method comprises the following steps of: using the propagation equation and the symmetry of the covariance matrix, adding the covariance of the state of the open umbrella point into the original objective function, taking into account the uncertainty of the atmospheric density, the aerodynamic parameters, and the dynamic constraint and the control constraint that the detector is subjected to, And other constraints such as path constraints can effectively improve the accuracy of the opening and closing by using the track which is planned by the method. Then, the method of trajectory design based on state sensitivity and state covariance is compared and analyzed from two aspects of computational complexity and robustness. In this paper, the trace tracking problem of the Martian detector in the atmosphere of Mars is studied. In view of the real-time and accuracy requirements of the detector in the atmospheric entry section, the trajectory tracking method based on the model predictive static planning technique is designed in view of the influence of the initial entry point deviation, the atmospheric density and the aerodynamic parameter uncertainty on the trajectory of the detector. The method combines the model predictive control with the static planning theory, and only needs to solve the static programming problem on-line, and the structure is simple and has the control and resolution solution. At the same time, in order to improve the on-line calculation speed, the coefficient matrix required for calculating the control amount is solved by a recursive method, and the error between the actual flight path and the nominal track is effectively reduced under the condition that the real-time requirement is ensured, and the state accuracy of the high-opening point state is realized. The key technology problem of the prediction and tracking guidance method for the entry section of the Mars atmosphere is studied. firstly, the track is divided into a first section, a balanced glide section and an entry end section by using a balance gliding condition, and the track tracking method combining the linear quadratic programming is focused on the condition that the change of the track angle of the balance glide section is zero, An analytical and predictive tracking guidance method based on the constant-value track angle is designed. The method has the advantages of high calculation speed, certain adaptability to various disturbance and uncertain factors, and low opening and opening precision under severe disturbance conditions. in order to realize high-precision guidance, a numerical prediction and tracking guidance method based on a constant-value track angle is further designed, which is designed as a Pre-bank section, a range control section and a heading correction section according to the track characteristics, The control law of track angle in real-time track is designed by means of the method of feedback linearization. The simulation results show that it has high open-parachute precision, but the calculation speed is slow. In this paper, two kinds of predictive tracking guidance methods are compared, and the applicability of these two kinds of prediction tracking guidance methods is discussed.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:V448.2;V412.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前7條
1 ;火星大氣 “神探”升空[J];太空探索;2013年12期
2 ;人在真空中會(huì)出現(xiàn)什么情況?[J];大科技;2000年02期
3 崔平遠(yuǎn);竇強(qiáng);高艾;;火星大氣進(jìn)入段通信“黑障”問(wèn)題研究綜述[J];宇航學(xué)報(bào);2014年01期
4 唐義;鄭旭麗;王靜;南一冰;張止戈;倪國(guó)強(qiáng);;火星大氣O_3光譜探測(cè)技術(shù)[J];航天返回與遙感;2012年06期
5 呂俊明;程曉麗;王強(qiáng);;飛行器進(jìn)入火星大氣的流場(chǎng)預(yù)測(cè)[J];空間科學(xué)學(xué)報(bào);2013年02期
6 張揚(yáng)眉;;美國(guó)“火星大氣與揮發(fā)物演變”探測(cè)器升空[J];國(guó)際太空;2013年12期
7 ;[J];;年期
相關(guān)會(huì)議論文 前8條
1 孔維剛;趙華;李磊;王勁東;程炳鈞;馮永勇;;火星大氣甲烷分層掃描,立體成像[A];第二十四屆全國(guó)空間探測(cè)學(xué)術(shù)交流會(huì)論文摘要集[C];2011年
2 程炳鈞;趙華;翟光杰;吳令安;王勁東;劉雪峰;;火星大氣甲烷斷層掃描立體成像概念研究[A];中國(guó)宇航學(xué)會(huì)深空探測(cè)技術(shù)專(zhuān)業(yè)委員會(huì)第九屆學(xué)術(shù)年會(huì)論文集(中冊(cè))[C];2012年
3 葉自煜;郭文瑾;朱忠奎;;火星大氣結(jié)構(gòu)分析儀[A];中國(guó)宇航學(xué)會(huì)深空探測(cè)技術(shù)專(zhuān)業(yè)委員會(huì)第七屆學(xué)術(shù)年會(huì)論文集[C];2010年
4 趙華;王勁東;周斌;程炳君;馮永勇;陶然;;火星大氣甲烷特征輻射斷層掃描立體成像探測(cè)器[A];第二十三屆全國(guó)空間探測(cè)學(xué)術(shù)交流會(huì)論文摘要集[C];2010年
5 張素君;平勁松;洪振杰;韓婷婷;毛曉飛;;星—地?zé)o線(xiàn)電掩星技術(shù)探測(cè)火星大氣和電離層[A];中國(guó)地球物理·2009[C];2009年
6 王叢叢;李一楠;;火星大氣微波探測(cè)技術(shù)研究[A];中國(guó)宇航學(xué)會(huì)深空探測(cè)技術(shù)專(zhuān)業(yè)委員會(huì)第十屆學(xué)術(shù)年會(huì)論文集[C];2013年
7 呂俊明;王強(qiáng);程曉麗;;飛行器進(jìn)入火星大氣的流場(chǎng)預(yù)測(cè)[A];北京力學(xué)會(huì)第18屆學(xué)術(shù)年會(huì)論文集[C];2012年
8 韓婷婷;毛曉飛;張素君;平勁松;洪振杰;;YH-1地基火星大氣掩星觀(guān)測(cè)前期處理[A];中國(guó)地球物理·2009[C];2009年
相關(guān)重要報(bào)紙文章 前8條
1 記者 任海軍;“好奇”號(hào)未發(fā)現(xiàn)火星大氣含甲烷[N];新華每日電訊;2012年
2 士元;“偵察兵”將破譯火星大氣密碼[N];中國(guó)航天報(bào);2013年
3 記者 常麗君;美火星大氣探測(cè)器成功入軌[N];科技日?qǐng)?bào);2014年
4 記者 常麗君;“專(zhuān)家號(hào)”將為人類(lèi)講述火星大氣的故事[N];科技日?qǐng)?bào);2013年
5 久亮;火星大氣何來(lái)甲烷[N];中國(guó)石油報(bào);2004年
6 復(fù)旦大學(xué)生命科學(xué)學(xué)院教授 博導(dǎo) 趙斌;“好奇”號(hào)為何苦尋甲烷?[N];中國(guó)礦業(yè)報(bào);2012年
7 何屹;火星大氣中發(fā)現(xiàn)甲醛化學(xué)指紋[N];科技日?qǐng)?bào);2005年
8 本報(bào)駐美國(guó)記者 陳一鳴;美國(guó)發(fā)射首顆火星大氣探測(cè)器[N];人民日?qǐng)?bào);2013年
相關(guān)博士學(xué)位論文 前1條
1 徐鴻影;火星大氣進(jìn)入段軌跡設(shè)計(jì)和制導(dǎo)方法研究[D];哈爾濱工業(yè)大學(xué);2015年
相關(guān)碩士學(xué)位論文 前3條
1 陳禹洪;火星大氣進(jìn)入軌跡制導(dǎo)與姿態(tài)控制方法研究[D];北京理工大學(xué);2015年
2 王寧寧;火星大氣中準(zhǔn)靜止行星波的分析研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2014年
3 修運(yùn)樂(lè);火星大氣進(jìn)入軌跡優(yōu)化與制導(dǎo)方法研究[D];南京航空航天大學(xué);2014年
,本文編號(hào):2439375
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/2439375.html