基于觀察學(xué)習(xí)的機(jī)場(chǎng)噪聲異構(gòu)集成預(yù)測(cè)模型
[Abstract]:With the continuous improvement of China's comprehensive national strength, the civil aviation transportation industry has made remarkable achievements. However, the increasingly serious problem of airport noise pollution has been accompanied, effective control of noise pollution around the airport has become a problem that civil aviation practitioners must focus on at present. Airport noise prediction is an important prerequisite for airport noise assessment and noise prevention, so it is of great significance to build a scientific, reasonable and comprehensive airport noise prediction model. In this paper, the existing prediction methods of airport noise based on machine learning are studied in detail. Among them, only one learner is used for correlation analysis prediction, and the prediction accuracy is not high and the generalization ability is poor. In this paper, an integrated prediction method for airport noise correlation analysis is proposed. The method considers the main influencing factors of airport noise and combines the idea of integrated learning. The spatial fitting algorithm and the BP neural network algorithm are used to construct a number of basic learning devices, and then the observation learning algorithm is used to integrate the multiple basic learning devices. The integration of multiple different learning devices can effectively improve the accuracy of correlation analysis and prediction, and the integration of multiple heterogeneous learning devices ensures the generalization ability of prediction methods. Based on the idea of Kalman filter and the improvement of time series prediction results, this paper presents a time series prediction method for airport noise based on Kalman filter optimization. In this method, a scheme of constructing time series with noise statistics is designed. Support vector regression machine is used to train predictor, and Kalman filter is used to optimize the prediction results. Due to the reasonable time series construction scheme and the optimization of the prediction results, the accuracy of this method is significantly improved compared with the previous time series prediction. Finally, a heterogeneous integrated prediction model of airport noise based on observation learning is proposed to meet the demand of stability, accuracy and reliability of airport noise prediction. In this model, two heterogeneous prediction methods, association analysis prediction and time series prediction, are reasonably integrated by using reverse observation learning through consistent data sets. Compared with the single method, this model has higher prediction accuracy and stronger generalization ability, which is suitable for the practical application of most airports in China.
【學(xué)位授予單位】:中國民航大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:V351;TP18
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 沈洪艷;機(jī)場(chǎng)噪聲環(huán)境影響評(píng)價(jià)的程序和方法[J];重慶環(huán)境科學(xué);2000年04期
2 李澤云;武夷山機(jī)場(chǎng)噪聲對(duì)國家旅游度假區(qū)的影響問題及其綜合治理[J];福建分析測(cè)試;2004年Z1期
3 楊周森;機(jī)場(chǎng)和飛機(jī)噪聲的測(cè)量和評(píng)價(jià)研究初探[J];噪聲與振動(dòng)控制;1988年03期
4 溫冬琴;王建東;;基于奇異譜分析的機(jī)場(chǎng)噪聲時(shí)間序列預(yù)測(cè)模型[J];計(jì)算機(jī)科學(xué);2014年01期
5 屠仁涌,汪昌齡,顧茸蕾;機(jī)場(chǎng)噪聲的標(biāo)準(zhǔn)、測(cè)量和估算[J];噪聲與振動(dòng)控制;1987年02期
6 鄭毅;鄭汝海;邵斌;王觀虎;徐明霞;;機(jī)場(chǎng)噪聲管理信息系統(tǒng)研究與開發(fā)[J];噪聲與振動(dòng)控制;2009年02期
7 丁萬昌;機(jī)場(chǎng)噪聲概述[J];噪聲與振動(dòng)控制;1987年02期
8 王維;楊小龍;;基于外部成本的機(jī)場(chǎng)噪聲收費(fèi)方法研究[J];中國民航大學(xué)學(xué)報(bào);2013年06期
9 肖慧慧;王超;徐肖豪;;機(jī)場(chǎng)飛機(jī)噪聲評(píng)價(jià)量及其限值的探討[J];噪聲與振動(dòng)控制;2011年02期
10 陳歡;許娟娟;;機(jī)場(chǎng)噪聲監(jiān)測(cè)系統(tǒng)研究[J];科技傳播;2011年06期
相關(guān)會(huì)議論文 前1條
1 柳小毅;施祥;盧向明;翟國慶;;機(jī)場(chǎng)噪聲與公眾主觀煩惱關(guān)系[A];運(yùn)輸噪聲的預(yù)測(cè)與控制——2009全國環(huán)境聲學(xué)學(xué)術(shù)會(huì)議論文集[C];2009年
相關(guān)碩士學(xué)位論文 前10條
1 吳躍;WSN中機(jī)場(chǎng)噪聲壓縮感知算法研究[D];南京航空航天大學(xué);2014年
2 肖驍;面向機(jī)場(chǎng)噪聲感知的組網(wǎng)技術(shù)研究[D];南京航空航天大學(xué);2015年
3 陳雪蕊;面向降低機(jī)場(chǎng)噪聲影響的飛行程序優(yōu)化研究[D];中國民航大學(xué);2016年
4 呼和木其日;面向機(jī)場(chǎng)噪聲動(dòng)態(tài)三維可視化的實(shí)時(shí)計(jì)算研究及其實(shí)現(xiàn)[D];中國民航大學(xué);2016年
5 王冬冬;機(jī)場(chǎng)噪聲評(píng)價(jià)指標(biāo)分析與應(yīng)用研究[D];中國民航大學(xué);2012年
6 張國臣;基于ZigBee和Internet的機(jī)場(chǎng)噪聲監(jiān)測(cè)系統(tǒng)研究[D];中國民航大學(xué);2013年
7 蘇瀚;基于觀察學(xué)習(xí)的機(jī)場(chǎng)噪聲異構(gòu)集成預(yù)測(cè)模型[D];中國民航大學(xué);2015年
8 張聰穎;機(jī)場(chǎng)噪聲煩惱度模型的研究與應(yīng)用[D];中國民航大學(xué);2015年
9 崔昭宇;面向泛網(wǎng)格式監(jiān)測(cè)點(diǎn)布局的機(jī)場(chǎng)噪聲動(dòng)態(tài)等值線繪制[D];中國民航大學(xué);2015年
10 楊婷婷;機(jī)場(chǎng)噪聲的關(guān)聯(lián)規(guī)則挖掘及信念網(wǎng)絡(luò)可視化表示研究[D];中國民航大學(xué);2015年
,本文編號(hào):2382346
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/2382346.html