基于EMD-SVM的航空故障電弧檢測
[Abstract]:With the development of aviation industry in China, the safe operation of aeronautical electrical system has attracted more and more attention. However, the working environment of aeronautical cable is special, and it needs to work in the environment of high temperature, high radiation and high vibration for a long time. These factors will accelerate the aging of aeronautical cable and induce fault arc. Aeronautical fault arc has high energy, and it is easy to cause fire, which is a serious threat to aviation safety. Therefore, the research of aeronautical fault arc detection technology is an important subject to ensure aviation safety. In this paper, the generation mechanism of aeronautical fault arc is summarized firstly, and the Cassie dynamic arc model is used to simulate the aeronautical series arc in Simulink environment. Based on the test method of fault arc in UL1699 standard, the test scheme is designed and the aeronautical arc test platform is built. The test platform is used to collect a large number of test data of aeronautical fault arc, and the fault arc test data of resistive load, inductive load and nonlinear load under the condition of 400Hz are obtained, and the aeronautical arc test database is established. It lays a foundation for the research of fault detection algorithm of aeronautical arc. In order to extract the fault characteristics of aeronautical arc, after analyzing the characteristics of arc current in frequency domain, the empirical mode decomposition (EMD) method is introduced to stabilize the current waveform of aeronautical arc. Then the third order autoregressive (AR) model is established for the IMF component of intrinsic mode function obtained by EMD, and the parameters of AR model are estimated by Burg algorithm. The model parameters can reflect the fault characteristics effectively and can be used as the eigenvector of aeronautical fault arc. Finally, the least square support vector machine (LS-SVM) is applied to the recognition of aeronautical fault arc, and the LS-SVM learning machine is constructed. The processed data are divided into training set and test set, and the LS-SVM classifier is trained and tested to identify the aero-arc fault of linear load, nonlinear load and unknown load. The results show that the algorithm can effectively identify the arc faults of nonlinear load and unknown load, and can provide a reference for the detection of aeronautical series fault arc.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:V267
【參考文獻(xiàn)】
中國期刊全文數(shù)據(jù)庫 前10條
1 劉曉明;王麗君;趙洋;王昊;;串聯(lián)故障電弧檢測方法的研究[J];電氣開關(guān);2014年01期
2 劉曉明;王麗君;侯春光;趙洋;劉湘寧;;基于小波包能量熵的低壓串聯(lián)故障電弧診斷[J];沈陽工業(yè)大學(xué)學(xué)報(bào);2013年06期
3 王子駿;張峰;張士文;顧昊英;曹潘亮;;基于支持向量機(jī)的低壓串聯(lián)故障電弧識(shí)別方法研究[J];電測與儀表;2013年04期
4 田芳;諶海云;劉麗;盧阿娟;;CENTUM-CS3000系統(tǒng)組態(tài)調(diào)試及維護(hù)[J];儀器儀表用戶;2012年06期
5 楊晟健;鐘清華;;基于FFT和電磁輻射的低壓電弧故障檢測[J];現(xiàn)代電子技術(shù);2012年18期
6 劉金琰;栗惠;章建兵;黃兢業(yè);;電弧故障斷路器UL標(biāo)準(zhǔn)研究[J];低壓電器;2011年18期
7 汪金剛;林偉;王志;李健;何為;王平;;基于紫外檢測的開關(guān)柜電弧在線檢測裝置[J];電力系統(tǒng)保護(hù)與控制;2011年05期
8 馬征;張國鋼;柯春俊;;一種基于高頻電流頻譜分析的故障電弧檢測方法[J];低壓電器;2010年09期
9 鄒云峰;吳為麟;李智勇;;基于自組織映射神經(jīng)網(wǎng)絡(luò)的低壓故障電弧聚類分析[J];儀器儀表學(xué)報(bào);2010年03期
10 楊藝;董愛華;付永麗;;低壓故障電弧檢測概述[J];低壓電器;2009年05期
中國碩士學(xué)位論文全文數(shù)據(jù)庫 前7條
1 白靜波;基于小波包變換和模糊神經(jīng)網(wǎng)絡(luò)的輸電線路故障診斷研究[D];太原理工大學(xué);2013年
2 郭家穩(wěn);故障電弧模式識(shí)別方法的研究[D];沈陽工業(yè)大學(xué);2013年
3 桂小智;低壓配電系統(tǒng)串聯(lián)電弧故障實(shí)驗(yàn)研究與電弧性短路故障仿真分析[D];重慶大學(xué);2011年
4 鄭志成;故障電弧在線診斷技術(shù)研究[D];沈陽工業(yè)大學(xué);2011年
5 吳建建;航空故障電弧檢測技術(shù)的研究[D];大連理工大學(xué);2009年
6 楊立樹;航空電氣系統(tǒng)絕緣故障的研究[D];大連理工大學(xué);2008年
7 吳卓奇;具有電弧檢測功能的直流固態(tài)功率控制器的研究[D];南京航空航天大學(xué);2008年
,本文編號(hào):2260073
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/2260073.html