超音速光學(xué)頭罩氣動(dòng)光學(xué)效應(yīng)仿真分析
[Abstract]:During the high speed flight, due to the flight speed of Mach 5, the surrounding air will have serious friction with the optical hood, which will cause the temperature of the outer surface of the optical window to rise, resulting in shock layer and boundary layer, etc. There is an irregular gradient refractive index field between the target and the optical imaging equipment, that is, the aero-optical effect is produced. The effect of aero-optics will lead to the optical path difference in the imaging of the system, which will lead to wave aberration, offset, jitter, blur, and the optical imaging system in the seeker will receive the affected target image and reduce the ability of target recognition and tracking. Therefore, the study of aerodynamic optical effect of hypersonic vehicle is of great significance in guidance. In this paper, the research history of atmospheric aero-optical effects is first analyzed, especially the achievements and development trends of aero-optical effects in recent years are analyzed in detail. The main content of this paper is the fluid distribution and its influence on the imaging of supersonic aircraft with a speed of 5 Mach when it flies smoothly under different flight conditions. Secondly, through the research of fluid mechanics, the two-dimensional mesh model of aircraft is established by using the grid modeling software. A non-uniform distributed model grid is used to sample and partition the grid flow field around the aircraft. Using the finite element analysis software of dynamic fluid dynamics, the flight parameters, such as flight angle of attack and variables of different environmental parameters, are set, boundary conditions, solver, solving methods and solving equations are determined. The aero-optical effects of the boundary layer and shock wave are studied, and the influence of different parameters on the flow field around the aircraft is obtained by adjusting the flight angle of attack and the flight environment parameter variables. Thirdly, this paper studies and analyzes the propagation mode of light in the flow field. Combining the ray tracing method and physical optics method, a fixed step ray tracing method is used by studying the traditional ray tracing method. It can simplify the modeling difficulty without affecting the calculation accuracy. Finally, the results are analyzed, and the simulation results are compared with the theory, and the results are explained theoretically. In summary, the main content of this paper is to generate the discrete distribution of air density in the area around the optical window by Fluent. The discrete distribution of refractive index is established by using the data read from MATLAB, and the incident light of point source in infinite distance is simulated. The wavefront aberration distribution on the optical window surface is obtained by the ray tracing method with fixed step size, and the complex amplitude distribution of the phase surface is obtained by Fourier transform, and the image quality evaluation function is analyzed and the conclusion is obtained.
【學(xué)位授予單位】:北京理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:V211
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 潘宏祿;程曉麗;馬漢東;;氣動(dòng)光學(xué)效應(yīng)研究中非定常流場(chǎng)模擬與分析[J];飛航導(dǎo)彈;2012年07期
2 李建彬;嚴(yán)兵;孫紅勝;任小婉;孫廣尉;王加朋;張玉國(guó);;用于氣動(dòng)光學(xué)效應(yīng)半實(shí)物仿真的光學(xué)模擬器技術(shù)[J];紅外與激光工程;2013年S1期
3 郭永洪,沈忙作,陸祖康;氣動(dòng)光學(xué)效應(yīng)的數(shù)值模擬與預(yù)測(cè)[J];光電工程;1998年S1期
4 李艷芳,韓志平,殷興良;氣動(dòng)光學(xué)效應(yīng)校正中湍流流場(chǎng)控制方法[J];現(xiàn)代防御技術(shù);2005年01期
5 史可天;馬漢東;;可壓縮混合層氣動(dòng)光學(xué)效應(yīng)研究[J];計(jì)算物理;2010年01期
6 殷興良;;現(xiàn)代光學(xué)新分支學(xué)科——?dú)鈩?dòng)光學(xué)[J];中國(guó)工程科學(xué);2005年12期
7 趙剡,宗云花,張世軍,楊秋英;氣動(dòng)光學(xué)效應(yīng)降晰函數(shù)辨識(shí)與圖像復(fù)原[J];兵工學(xué)報(bào);2005年02期
8 閆溟;史可天;馬漢東;;針對(duì)氣動(dòng)光學(xué)效應(yīng)的RANS計(jì)算方法研究[J];空氣動(dòng)力學(xué)學(xué)報(bào);2013年04期
9 費(fèi)錦東;氣動(dòng)光學(xué)效應(yīng)校正技術(shù)初步分析[J];紅外與激光工程;1999年05期
10 張亞萍;范志剛;劉金強(qiáng);;紅外末制導(dǎo)中的氣動(dòng)光學(xué)效應(yīng)分析[J];激光與紅外;2006年06期
相關(guān)會(huì)議論文 前6條
1 張怡;趙剡;許東;;總變分最小化算法在氣動(dòng)光學(xué)效應(yīng)退化圖像復(fù)原中的應(yīng)用[A];2004全國(guó)光學(xué)與光電子學(xué)學(xué)術(shù)研討會(huì)、2005全國(guó)光學(xué)與光電子學(xué)學(xué)術(shù)研討會(huì)、廣西光學(xué)學(xué)會(huì)成立20周年年會(huì)論文集[C];2005年
2 張勵(lì);劉超峰;田義;;氣動(dòng)光學(xué)效應(yīng)仿真技術(shù)研究與展望[A];第十屆全國(guó)光電技術(shù)學(xué)術(shù)交流會(huì)論文集[C];2012年
3 陳植;易仕和;周勇為;葛勇;田立豐;;超聲速層流后臺(tái)階氣動(dòng)光學(xué)效應(yīng)試驗(yàn)研究[A];第十五屆全國(guó)激波與激波管學(xué)術(shù)會(huì)議論文集(上冊(cè))[C];2012年
4 馬漢東;史可天;王鐵進(jìn);;高速剪切流動(dòng)及其光學(xué)傳輸效應(yīng)研究[A];慶祝中國(guó)力學(xué)學(xué)會(huì)成立50周年暨中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)’2007論文摘要集(上)[C];2007年
5 孫家憲;趙剡;許東;;氣動(dòng)光學(xué)效應(yīng)圖像復(fù)原振鈴效應(yīng)抑制自適應(yīng)算法的研究[A];2004全國(guó)光學(xué)與光電子學(xué)學(xué)術(shù)研討會(huì)、2005全國(guó)光學(xué)與光電子學(xué)學(xué)術(shù)研討會(huì)、廣西光學(xué)學(xué)會(huì)成立20周年年會(huì)論文集[C];2005年
6 謝文科;姜宗福;;基于相干結(jié)構(gòu)的氣動(dòng)光學(xué)效應(yīng)低階近似校正[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(上)[C];2005年
相關(guān)碩士學(xué)位論文 前4條
1 王麗;基于可變形鏡系統(tǒng)的氣動(dòng)光學(xué)效應(yīng)模擬器研究[D];哈爾濱工業(yè)大學(xué);2015年
2 韓瑩;超音速光學(xué)頭罩氣動(dòng)光學(xué)效應(yīng)仿真分析[D];北京理工大學(xué);2016年
3 楊歡;氣動(dòng)光學(xué)效應(yīng)對(duì)紅外成像影響的仿真分析[D];上海交通大學(xué);2009年
4 吳凡;氣動(dòng)光學(xué)效應(yīng)對(duì)激光雷達(dá)測(cè)距精度的影響及修正[D];哈爾濱工業(yè)大學(xué);2014年
,本文編號(hào):2214791
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/2214791.html