航空發(fā)動機(jī)狀態(tài)預(yù)測與健康管理中的氣路數(shù)據(jù)挖掘方法研究
[Abstract]:After maintenance and regular maintenance of aero-engine maintenance mode is too old, there are many shortcomings such as low efficiency, huge maintenance costs, can not effectively ensure flight safety and reliability, and so on. And these malpractices are more and more obvious in practical engineering application. Compared with the traditional maintenance method, the aero-engine prediction and health management (EPHM) technology realizes the passive maintenance after the event, and the periodic maintenance changes to the intelligent system-based maintenance. It is possible for engineers and technicians to accurately locate the potential faults of the engine and carry out active maintenance at a specific time, thus improving the aircraft maintenance efficiency, flight safety and aircraft reliability, and reducing the maintenance cost. Taking the gas path system of Trent700 engine developed by Rolls-Royce Company as an example, this paper makes a deep research on the data mining technology, which is one of the core problems of aero-engine prediction and health management technology. Firstly, the relevant data of the gas path system state parameters of the engine are mined. Taking the turbine gas temperature TGT as an example, the baseline of the state parameters reflecting the performance of the gas path is modeled, and the model is verified. The baseline accuracy meets the requirements, which lays a foundation for the monitoring of the gas path state of the engine. Then, based on the deviation values of gas path parameters calculated in the monitoring process, the performance degradation information contained therein is mined, and the regression prediction model of support vector machine (Support Vector machines) algorithm is established. A single point trend prediction is made for the deviation of multiple gas path parameters in the future. In addition, on the basis of this prediction model, we try to incorporate the fuzzy information granulation theory, establish the support vector machine (Granular Support Vector Machines, GrSVM) prediction model based on information granulation, and predict the range of the next five time series points. Finally, the prediction performance of the model is tested and analyzed by simulation experiments. The results show that the precision of the single point prediction model based on SVM and the range prediction model based on GrSVM meets the requirements, which provides a reference for the trend prediction research of EPHM system.
【學(xué)位授予單位】:中國民用航空飛行學(xué)院
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:V263.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉楊;任德奎;;基于灰色理論的間斷性需求備件預(yù)測方法[J];四川兵工學(xué)報;2011年04期
2 李愛軍;章衛(wèi)國;譚鍵;;飛行器健康管理技術(shù)綜述[J];電光與控制;2007年03期
3 張叔農(nóng);康銳;;數(shù)據(jù)挖掘技術(shù)在航空發(fā)動機(jī)PHM中的應(yīng)用[J];彈箭與制導(dǎo)學(xué)報;2008年01期
4 馬碩;焦現(xiàn)煒;田柯文;呂世樂;趙陽;鄭善軍;;故障預(yù)測技術(shù)發(fā)展與分類[J];四川兵工學(xué)報;2013年02期
5 宋云雪;張科星;史永勝;;基于多元線性回歸的發(fā)動機(jī)性能參數(shù)預(yù)測[J];航空動力學(xué)報;2009年02期
6 曹霞;黃圣國;;ACMS的飛機(jī)狀態(tài)監(jiān)控新概念[J];江蘇航空;2000年03期
7 張寶珍;;預(yù)測與健康管理技術(shù)的發(fā)展及應(yīng)用[J];測控技術(shù);2008年02期
8 鐘詩勝,周志波,張永,康力平;基于三次回歸分析的試車臺基線庫的建立[J];計算機(jī)集成制造系統(tǒng);2005年02期
9 鐘詩勝;崔智全;付旭云;;Rolls-Royce發(fā)動機(jī)基線挖掘方法[J];計算機(jī)集成制造系統(tǒng);2010年10期
10 尉詢楷;朱紀(jì)洪;陳良峰;馮悅;楊立;;航空發(fā)動機(jī)PHM中的數(shù)據(jù)挖掘機(jī)遇與挑戰(zhàn)[J];計算機(jī)工程與科學(xué);2012年04期
,本文編號:2159502
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/2159502.html