中央翼翻轉(zhuǎn)機(jī)構(gòu)的設(shè)計(jì)研究
[Abstract]:With the development of science and technology, aircraft has become one of the most important means of transportation in modern life. The central wing is an important component of the aircraft. It is located in the middle of the aircraft and has no complete shape. It plays an important role in connecting the left and right wings of the aircraft, bearing the lift of the two wings and the gravity of the fuselage. It is an important force component of the whole aircraft. Therefore, the installation and machining accuracy of the central wing have an important effect on the balance and force of the whole aircraft. After the central wing is installed, it is necessary to carry out NC hole machining on its end surface. But the central wing is perpendicular to each other on the mounting frame and in the machining of the end hole, that is to say, it is necessary to remove the central wing from the mounting frame and turn it over 90 擄. Although the original turnover mechanism can make the central wing complete the turnover smoothly, the turnover process is more complex, inefficient and has certain security hidden trouble. The purpose of the design of the aircraft central wing turnover mechanism is to design a mechanism to make the center wing flip conveniently and quickly, to reduce the hidden danger of safety caused by the mechanism to the production workers, to save the manpower and material resources in the turnover process, and to improve the production efficiency. According to the actual requirements of the project entrustment enterprise and the development trend of the turnover mechanism, combined with the actual situation of the central wing turnover, the project design is carried out in this paper. It is modeled by CATIA 3D design software, modeled by virtual prototyping technology, simulated and verified the feasibility of the scheme. Finally, the important parts of the flip mechanism are analyzed by ANSYS finite element software. The main contents of this paper are: 1: 1. According to the design requirements of the turnover mechanism and the dismount route of the central wing, the scheme design of the turnover mechanism is carried out, and the turnover principle, the choice of the lifting point, the choice of the power source and its control mode are determined. The design of the important parts in the reversing mechanism includes the design of the suspension beam, the hanging, the design of the support frame, the determination of the cross section size and the strength check, the calculation of the friction force of the belt transmission and the study on whether the sliding phenomenon of the belt transmission will occur in the flip mechanism. The simplified model of the flip mechanism is established in Recurdyn, and the model of virtual prototype is built by adding constraints, loads, drives, etc. The correctness of the model is verified by kinematics simulation analysis, and a series of dynamic parameters .4in the process of operation are obtained. The model of suspension beam is established in CATIA, and the data interface is imported into ANSYS Workbench. The static analysis of the beam is carried out by using ANSYS Workbench software. The stress changes and the deformation of the beam are obtained, and the strain fatigue analysis of the beam is carried out. After a certain number of times, the safety factor, life span and damage of each part of the beam are obtained. The response surface analysis tool of ANSYS Workbench software is used to analyze the influence of the dimensions of the cross section of the suspension beam on the total deformation and equivalent stress of the beam, and it is obtained that the total deformation and equivalent stress of the beam are invariant. Cross section size parameter that minimizes its mass.
【學(xué)位授予單位】:陜西理工學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:V261
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;國際牌造芯機(jī)翻轉(zhuǎn)機(jī)構(gòu)的改進(jìn)與參數(shù)計(jì)算[J];鑄造設(shè)備研究;1985年03期
2 劉麗霞;;一機(jī)兩用中間罐翻轉(zhuǎn)機(jī)構(gòu)設(shè)計(jì)[J];民營科技;2008年06期
3 宋聯(lián)美;徐素莉;賈利曉;;農(nóng)用車總裝線翻轉(zhuǎn)機(jī)構(gòu)改進(jìn)設(shè)計(jì)[J];洛陽理工學(xué)院學(xué)報(bào)(自然科學(xué)版);2008年01期
4 孫后環(huán);徐海涵;楊謀存;殷晨波;;風(fēng)電葉片模具液壓翻轉(zhuǎn)機(jī)構(gòu)的速度控制[J];液壓與氣動(dòng);2010年07期
5 劉浩亮;李智;;溫度對(duì)某雷達(dá)翻轉(zhuǎn)機(jī)構(gòu)影響分析[J];火控雷達(dá)技術(shù);2011年02期
6 黃漢輝;張祖?zhèn)?;不銹鋼板坯高速、重負(fù)荷側(cè)磨機(jī)及其翻轉(zhuǎn)機(jī)構(gòu)[J];重型機(jī)械;1988年01期
7 石航;呂萬會(huì);;一種新型圓桶提升翻轉(zhuǎn)機(jī)構(gòu)[J];機(jī)械制造與自動(dòng)化;2013年03期
8 陳殿生;鄭萬軍;黃宇;沈奇;王田苗;;彈跳機(jī)器人翻轉(zhuǎn)機(jī)構(gòu)的設(shè)計(jì)與優(yōu)化[J];機(jī)械工程學(xué)報(bào);2011年01期
9 張敏強(qiáng);鄭國威;宮經(jīng)珠;段生記;;某翻轉(zhuǎn)機(jī)構(gòu)的力學(xué)分析[J];機(jī)械工程師;2012年07期
10 原永亮;楊臻;朱明一;高驍波;李永振;;某自動(dòng)補(bǔ)彈系統(tǒng)翻轉(zhuǎn)機(jī)構(gòu)的設(shè)計(jì)及仿真[J];火力與指揮控制;2014年08期
相關(guān)會(huì)議論文 前1條
1 夏勇;張?jiān)鎏?;高機(jī)動(dòng)雷達(dá)自動(dòng)架撤系統(tǒng)的設(shè)計(jì)[A];2005年機(jī)械電子學(xué)學(xué)術(shù)會(huì)議論文集[C];2005年
相關(guān)碩士學(xué)位論文 前6條
1 高衛(wèi)紅;中央翼翻轉(zhuǎn)機(jī)構(gòu)的設(shè)計(jì)研究[D];陜西理工學(xué)院;2015年
2 蔣錚;垃圾轉(zhuǎn)運(yùn)設(shè)備翻轉(zhuǎn)機(jī)構(gòu)仿真及優(yōu)化[D];揚(yáng)州大學(xué);2014年
3 文航凌;某新型天線翻轉(zhuǎn)機(jī)構(gòu)的設(shè)計(jì)及優(yōu)化[D];電子科技大學(xué);2013年
4 韓小平;雙向犁液壓翻轉(zhuǎn)機(jī)構(gòu)的計(jì)算機(jī)仿真分析[D];山西農(nóng)業(yè)大學(xué);2004年
5 李振偉;20kg鋁錠翻轉(zhuǎn)機(jī)構(gòu)虛擬仿真及動(dòng)力學(xué)分析[D];蘭州理工大學(xué);2013年
6 宋明星;基于變頻控制的風(fēng)電葉片模具液壓翻轉(zhuǎn)機(jī)構(gòu)電液系統(tǒng)研究[D];燕山大學(xué);2012年
,本文編號(hào):2158763
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/2158763.html