天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 航空航天論文 >

深空環(huán)境下近距離繩系衛(wèi)星系統(tǒng)控制方法研究

發(fā)布時間:2018-07-29 10:32
【摘要】:應(yīng)用多體航天器編隊技術(shù)進行深空探測是21世紀空間技術(shù)發(fā)展的新趨勢。而繩系衛(wèi)星系統(tǒng)作為多體航天器編隊中的一種特殊形式,與自由編隊飛行相比具有控制精度高,節(jié)約燃料等優(yōu)點,尤其適用于合成孔徑雷達等空間觀測任務(wù),可以進一步提高人類深空探測的能力。但是由于系統(tǒng)的復(fù)雜性與多樣性,需要根據(jù)具體的繩系衛(wèi)星系統(tǒng)結(jié)構(gòu)與目標,進行動力學(xué)建模分析與控制器設(shè)計來滿足任務(wù)需求。本文在總結(jié)已有成果的基礎(chǔ)上,以國家自然科學(xué)基金項目“深空環(huán)境下繩系衛(wèi)星動力學(xué)建模與控制研究”為研究背景,對近距離繩系衛(wèi)星系統(tǒng)的系繩平臺姿態(tài)控制、相對位置控制及平動點附近的姿軌耦合控制問題進行了深入研究,論文主要包含以下三個部分內(nèi)容:針對深空環(huán)境下多體旋轉(zhuǎn)繩系衛(wèi)星系繩平臺的姿態(tài)控制問題,以改變平臺旋轉(zhuǎn)角速度并穩(wěn)定速度變化引起的擺動角運動為控制目標,以最優(yōu)性和魯棒性為前提,研究了全驅(qū)動系統(tǒng)和欠驅(qū)動系統(tǒng)的魯棒最優(yōu)控制器設(shè)計,并進行了深入分析。給出了多體旋轉(zhuǎn)繩系衛(wèi)星系繩平臺的姿態(tài)非線性運動方程,應(yīng)用同步性理論對其進行了簡化,以此為控制對象,首先考慮系統(tǒng)存在的未知干擾與不確定性問題,將最優(yōu)控制理論、自適應(yīng)理論和魯棒誤差符號積分方法相結(jié)合進行了魯棒最優(yōu)控制器的設(shè)計與分析,不僅考慮到最優(yōu)性還能保證系統(tǒng)的魯棒性。以此為基礎(chǔ),考慮無推力器的欠驅(qū)動情況,應(yīng)用微分同胚映射理論將系統(tǒng)進行轉(zhuǎn)化,進一步應(yīng)用魯棒最優(yōu)控制方法設(shè)計了欠驅(qū)動系繩平臺的姿態(tài)穩(wěn)定控制器。通過對二體旋轉(zhuǎn)繩系衛(wèi)星系統(tǒng)和直連式三體繩系衛(wèi)星系統(tǒng)進行仿真與對比分析,驗證了控制器設(shè)計的有效性。針對深空環(huán)境下多體庫侖衛(wèi)星系統(tǒng)的相對位置控制問題,首先對二體及三體庫侖衛(wèi)星系統(tǒng)進行了動力學(xué)建模與分析。考慮到庫侖推進器的控制輸入飽和及外界干擾的存在,應(yīng)用光滑函數(shù)近似飽和函數(shù)將系統(tǒng)進行增廣,結(jié)合反步法提出了二體庫侖衛(wèi)星相對位置控制方法,并利用Nussbaum函數(shù)解決增廣系統(tǒng)的控制系數(shù)時變引起的問題。在此基礎(chǔ)上,考慮到庫侖力的控制范圍和衛(wèi)星之間潛在的碰撞帶來的系統(tǒng)狀態(tài)有約束的問題,構(gòu)造了狀態(tài)限制輔助函數(shù),應(yīng)用反步法設(shè)計了控制受限下的二體庫侖衛(wèi)星系統(tǒng)的相對位置控制器。進一步考慮到無速度信息反饋的情況,結(jié)合濾波器的方法設(shè)計了庫侖衛(wèi)星相對位置輸出反饋控制器。最后,考慮僅采用庫侖力控制的一般三體庫侖衛(wèi)星系統(tǒng)的相對位置控制問題,由于其系統(tǒng)具有非線性、非仿射性和多約束等特殊條件,應(yīng)用一般的輔助函數(shù)法進行設(shè)計存在一定困難,因此采用非線性預(yù)測控制方法設(shè)計了考慮多約束的三體庫侖繩系衛(wèi)星的相對位置控制器,最后通過仿真驗證了上述控制器設(shè)計的有效性。論文最后一部分針對深空環(huán)境下長周期運動中二體繩系衛(wèi)星姿態(tài)與軌道穩(wěn)定控制問題進行了研究。為了進行具體分析,假設(shè)系統(tǒng)質(zhì)心位于地-月系共線平動點附近。在限制性三體問題下,應(yīng)用歐拉-拉格朗日方法建立了二體繩系衛(wèi)星系統(tǒng)的非線性姿態(tài)軌道耦合動力學(xué)模型,并以此為控制對象設(shè)計了基于二次型最優(yōu)問題的非線性SDRE控制器?紤]到在軌道運動中位置速度信息不易獲得的情況,應(yīng)用SDRE狀態(tài)觀測器理論對速度信息進行觀測,并與非線性SDRE反饋控制方法結(jié)合,設(shè)計了非線性SDRE輸出反饋控制器。接下來,考慮到長期運動過程中,空間中存在的干擾會對系統(tǒng)穩(wěn)定造成影響,對太陽光壓力、軌道偏心率和太陽引力攝動等主要干擾進行了分析。并針對考慮干擾影響的二體繩系衛(wèi)星系統(tǒng)魯棒控制問題,提出了將魯棒控制問題轉(zhuǎn)化為二次型最優(yōu)控制問題的方法,通過對二次型最優(yōu)問題的求解間接地得到魯棒控制問題的控制器,由此得到二體繩系衛(wèi)星系統(tǒng)姿軌耦合非線性魯棒SDRE控制器,并進行了系統(tǒng)的穩(wěn)定性分析。最后,通過數(shù)值仿真驗證了所設(shè)計方法的有效性。
[Abstract]:The application of multi-body spacecraft formation technology to deep space detection is a new trend in the development of space technology in twenty-first Century. As a special form of the multibody spacecraft formation, the rope system has the advantages of high control precision and fuel saving compared with free formation flight. It is especially suitable for space observation tasks such as synthetic aperture radar, and so on. To further improve the ability of human deep space detection, however, due to the complexity and diversity of the system, the dynamic modeling analysis and controller design are needed to meet the requirements of the task according to the structure and target of the specific rope system satellite system. On the basis of summarizing the existing achievements, this paper takes the National Natural Science Foundation Project "deep space environment". The research of the dynamic modeling and control of the rope system satellite is the research background. The attitude control of the tether platform, the relative position control and the attitude and orbit coupling control near the moving point of the close range ropes system are deeply studied. The paper mainly contains the following three parts: the multibody ropes in the deep space environment The attitude control problem of the platform is used to change the swing angle motion caused by the rotating angular velocity of the platform and the change of the steady speed change as the control target. Based on the optimality and robustness, the robust optimal controller design of the full drive system and the underactuated system is studied, and the multi-body rotating rope system platform of the satellite tether is given. The nonlinear motion equation of attitude is simplified by using the synchronization theory. In this way, the unknown disturbance and uncertainty of the system are considered. The optimal control theory, the adaptive theory and the robust error sign integration method are combined to design and analyze the optimal controller of the Lu bar. Optimality can also guarantee the robustness of the system. On the basis of this, considering the underactuation of the non thruster, the system is transformed by differential homeomorphism, and the attitude stabilization controller of the underactuated tether platform is designed by using the robust optimal control method. The two body rotating rope system and the direct connected trisomy rope are used. The simulation and comparison analysis of the satellite system verify the effectiveness of the controller design. In view of the relative position control problem of the multi-body Coulomb satellite system under the deep space environment, the dynamic modeling and analysis of the two body and three body Coulomb satellite system are carried out first, and the existence of the control input saturation and external interference of the Coulomb propulsion is taken into account. Using the approximate saturation function of the smooth function, the system is augmented, and the relative position control method of the two body Coulomb satellite is proposed by the anti step method, and the problem caused by the time change of the control coefficient of the augmented system is solved by using the Nussbaum function. The state restriction problem, the state restriction auxiliary function is constructed, and the relative position controller of the two body Coulomb satellite system under control is designed by using the backstepping method. The feedback controller of the Coulomb satellite phase pair position is designed with the method of the speed free feedback. The relative position control problem of the general three body Coulomb satellite system controlled by Coulomb force is difficult to be designed by the general auxiliary function method because of its nonlinear, non affine and multi constraint conditions. Therefore, the nonlinear predictive control square method is used to design a three body Coulomb line guard with multiple constraints. The relative position controller of the star is used to verify the effectiveness of the design of the above controller. The last part of the paper is aimed at the study of the attitude and orbit stability of the two body ropes in the long period motion of the deep space environment. Under the restrictive trisomy problem, the nonlinear attitude track coupling dynamic model of the two body rope system satellite system is established by using the Euler Lagrange method, and the nonlinear SDRE controller based on the two times optimal problem is designed as the control object. Considering the situation that the position velocity information is not easy to be obtained in the orbit movement, the SD is applied to the system. The RE state observer theory observes the velocity information and combines with the nonlinear SDRE feedback control method to design a nonlinear SDRE output feedback controller. Next, the disturbance in the space will affect the stability of the system in the long motion process, and the solar light pressure, orbital eccentricity and solar gravitational perturbation are the main factors. The interference is analyzed. In view of the robust control problem of the two body rope system satellite system considering the influence of interference, the method of transforming the robust control problem into the two order optimal control problem is proposed. The controller of the robust control problem is indirectly obtained by the solution of the two order optimal problem, thus the attitude and orbit of the two body ropes system satellite system is obtained. The nonlinear robust SDRE controller is coupled and the stability of the system is analyzed. Finally, the effectiveness of the design method is verified by numerical simulation.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:V448.2
,

本文編號:2152401

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/2152401.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b6926***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com