基于自由度的飛機曲面輪廓度公差的建模與分析
[Abstract]:Computer Aided Tolerancing (CAT) is an important link in product life cycle. It not only helps to share and exchange data in product development, but also provides a systematic and comprehensive method for product precision, quality and cost control. Since it was put forward and developed in 70s, CAT technology has been obtained Compared with other computer aided technology, the development of CAT technology is far behind CAD and the development of CAM technology, which has become one of the bottlenecks that restrict the integration of CAD/CAM. Therefore, it is urgent to develop CAT technology to help realize the integrated development and management of product life cycle. In CAT research, not only should be considered. The tolerance of regular shape features, while taking into account the tolerance of irregular shape features; the characteristic of a curve (surface) as a type of irregular shape, is widely used in mechanical products, even simple mechanical products may have such characteristics. However, there are few CAT studies on the characteristics of the curve (surface), which need further study. Development. In the CAT study, the model developed on the basis of freedom is a widely used model and is the current research hotspot, which is mainly due to the following advantages: (1) support very many geometric features and tolerance types, (2) many tolerance semantic information and rules in the support standard, (3) support The 3D tolerance analysis and verification for the whole tolerance domain, (4) support the automation and intelligent reasoning of tolerance information, (5) it is beneficial to the information sharing and integration between CAT technologies. At the same time, it is suitable for the requirements of the digital assembly coordination of aircraft products. Therefore, this paper is based on the degree of freedom and expands the plane curve (surface). The research of modeling and analysis of the geometric tolerance is aimed at providing a universal solution for the CAT design of plane curve (surface) features, promoting the integration of CAD/CAM and helping to realize the integrated development and management of the product life cycle. The main contents and achievements of the full text are as follows: 1) analysis of the use of freedom to express the contour of the curve (surface). The feasibility of tolerance. In view of the difference between irregular shape features and regular shape features, the problems (first class and second types of degrees of freedom) are analyzed by using the degree of freedom to express the profile degree tolerance of the curve (surface). The corresponding solutions are given by using the approximate method for the first and the second classes of freedom degree. The first and second types of error (also called type I and type II errors) of the degree of freedom are obtained. Therefore, by judging whether the type I and type II errors can be ignored, the profile tolerance.2 of the curve (surface) can be determined whether the degree of freedom can be expressed as a curve (surface).) the building of the curve (surface) profile tolerance is proposed. ASDOF (Assessment, Split, and Degrees of Freedom) method of model and analysis, which consists of two parts: tolerance modeling of curve (surface) features and tolerance analysis of curve (surface) features; the former includes the determination of the variation of degree of freedom, the cutting of the characteristic of the curve (surface), and the extraction and representation of the degree of freedom parameter of the profile degree tolerance. The two parts of the determination of the variation of the degree of freedom and the segmentation of the characteristic of the curve (surface) are used to eliminate the type I and type II errors; the degree of freedom parameters of the contour tolerance are extracted and expressed in the expression of the value interval of the degree of freedom parameters and the expression of their mutual constraints; the tolerance analysis of the curve (surface) features is within the part of the tolerance analysis. The capacity is mainly the assembly accumulation relation of constructing curve (surface) features and the completion of corresponding tolerance analysis.3). The determination method of type I and type II error is proposed, and it is summed up as two decision algorithms. The first algorithm is used to determine the type I error, and the second algorithm is used to determine the type II error. With the help of the two algorithms, it can judge whether or not. The error of type I and type II can be ignored; the algorithm simplifies the problem to the maximum of the calculation error in the implementation process and avoids the infinity judgment caused by the error at all points. The algorithm used in the algorithm includes the rotation transformation, the parameter replacement, the regional principle, the maximum value method, the genetic algorithm and the like.4). For the curve (surface) feature that can not ignore type I and type II errors, the segmentation algorithm divides the curve (surface) features to make the segmented subcurve (surface) features overlook the above two types of error; the algorithm simplifies the problem as the maximum curvature point of calculating the curve (surface) features and uses the recursive original. On the basis of the above decision and segmentation algorithm, the degree of freedom parameters of the curve (surface) profile tolerance is extracted and expressed and the corresponding assembly tolerance analysis is completed on the basis of the above decision and segmentation algorithm. First, the geometric size of the curve (surface), the size of tolerance, and the limit of the boundary of tolerance domain are based on the curve (surface) characteristics. It extracts and calculates the range of variation and the mutual constraint relation between them, and then uses the homogeneous coordinate transformation to establish the assembly accumulation relation of the characteristic of the curve (surface). Finally, the assembly tolerance analysis of the curve (surface) characteristics is realized by Monte Carlo method. The whole text is taken as an example of the fork ear component of a certain type of aircraft to verify the proposed side The correctness and reliability of the method. The study of tolerance modeling and analysis around the characteristics of plane curve (surface) provides a rich basic material for the overall study of CAT, which has important theoretical guiding significance and practical value of engineering practice.
【學(xué)位授予單位】:西北工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:V221
【相似文獻】
相關(guān)期刊論文 前10條
1 張勇;黃克正;高常青;;基于功能表面的公差表示模型研究[J];機床與液壓;2006年03期
2 金希武;;蘇聯(lián)及國際兩種公差制度的比較[J];機械制造;1952年01期
3 張伯鵬;;公差之合理設(shè)計——統(tǒng)計方法在制造設(shè)計上之應(yīng)用[J];機械制造;1953年11期
4 袁長良;;光滑驗規(guī)公差帶分布位置的探討[J];太原工學(xué)院學(xué)報;1961年01期
5 連成舉;我廠如何貫徹新國標《公差與配合》[J];航空標準化;1982年04期
6 高志祥;入體公差注法及對稱公差注法的合理使用[J];航空標準化;1983年01期
7 任志新;;也談機修生產(chǎn)中的公差[J];設(shè)備維修;1983年03期
8 徐惠德;;對解決機修生產(chǎn)中公差問題的看法[J];設(shè)備維修;1983年06期
9 ;改型產(chǎn)品貫徹新國標《公差與配合》的幾點做法[J];航空標準化;1984年01期
10 徐才勝;;綜合量規(guī)公差的選取與公差帶位置的確定原則探討[J];計量技術(shù);1989年02期
相關(guān)會議論文 前4條
1 張曉玲;陳學(xué)德;;考慮公差帶影響的法蘭螺紋的應(yīng)力分析[A];第十七屆全國反應(yīng)堆結(jié)構(gòu)力學(xué)會議論文集[C];2012年
2 王利君;閻艷;王潤鴻;;基于Pro/E的3D公差信息模型的實現(xiàn)[A];全國先進制造技術(shù)高層論壇暨第七屆制造業(yè)自動化與信息化技術(shù)研討會論文集[C];2008年
3 顧寄南;張林搚;候永濤;黃娟;;基于虛擬裝配的裝配工具與公差的信息建模研究[A];提高全民科學(xué)素質(zhì)、建設(shè)創(chuàng)新型國家——2006中國科協(xié)年會論文集(下冊)[C];2006年
4 張博;楊發(fā)貞;梁昌明;;不對稱公差在車身開發(fā)中的應(yīng)用[A];2013中國汽車工程學(xué)會年會論文集[C];2013年
相關(guān)重要報紙文章 前1條
1 楊鋼作坊 ;;螺紋鋼銷售問題引發(fā)的討論[N];現(xiàn)代物流報;2006年
相關(guān)博士學(xué)位論文 前8條
1 陳姣;基于自由度的飛機曲面輪廓度公差的建模與分析[D];西北工業(yè)大學(xué);2015年
2 曹衍龍;面向制造環(huán)境的公差穩(wěn)健設(shè)計方法與技術(shù)的研究[D];浙江大學(xué);2003年
3 黃美發(fā);面向設(shè)計和制造的并行公差設(shè)計方法研究[D];華中科技大學(xué);2004年
4 茅健;基于數(shù)學(xué)定義的公差建模與誤差評定技術(shù)的研究[D];浙江大學(xué);2007年
5 蔡敏;基于數(shù)學(xué)定義的圓柱要素公差數(shù)學(xué)建模與分析技術(shù)的研究[D];浙江大學(xué);2002年
6 巢炎;基于公差約束的CAPP的關(guān)鍵技術(shù)研究[D];浙江大學(xué);2006年
7 趙延明;機械產(chǎn)品質(zhì)量損失建模與公差體系優(yōu)化設(shè)計方法研究[D];中南大學(xué);2013年
8 蔣科;機械產(chǎn)品幾何精度設(shè)計中的三維偏差分析技術(shù)[D];北京理工大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 全毅;箱體公差對變速箱力學(xué)性能的影響[D];華南理工大學(xué);2015年
2 歐陽君濤;基于特征變動的裝配公差建模研究[D];西北工業(yè)大學(xué);2007年
3 劉海博;機械產(chǎn)品幾何精度設(shè)計中的多目標公差優(yōu)化技術(shù)[D];北京理工大學(xué);2015年
4 吳文;面向產(chǎn)品設(shè)計的公差設(shè)計方法研究[D];長安大學(xué);2004年
5 董佯佯;三維公差標注正確性驗證原型軟件的研制[D];杭州電子科技大學(xué);2015年
6 李芳振;并行公差穩(wěn)健設(shè)計方法研究[D];電子科技大學(xué);2012年
7 鄒洪富;基于群集智能的產(chǎn)品公差優(yōu)化設(shè)計方法研究[D];華中科技大學(xué);2006年
8 于鵬;三維公差模型中關(guān)鍵因子的研究與分析[D];安徽農(nóng)業(yè)大學(xué);2013年
9 黃芳;基于新一代GPS標準體系的功能公差規(guī)范設(shè)計研究[D];浙江大學(xué);2008年
10 胡慧;基于設(shè)計公差的產(chǎn)品定位基準決策及工藝路線生成策略[D];浙江大學(xué);2004年
,本文編號:2144867
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/2144867.html