小行星探測(cè)器跳躍行走導(dǎo)航與控制策略研究
發(fā)布時(shí)間:2018-06-13 13:40
本文選題:小行星 + 跳躍行走; 參考:《哈爾濱工業(yè)大學(xué)》2015年碩士論文
【摘要】:小行星探測(cè)是當(dāng)今空間探測(cè)新的發(fā)展方向,其中在小行星表面巡游探測(cè)方式對(duì)行星的探索與開發(fā)具有重要意義。小行星探測(cè)器跳躍行走方案相對(duì)于輪式探測(cè)器更能適應(yīng)小行星表面的微重力場(chǎng)環(huán)境,是未來(lái)針對(duì)小行星表面探測(cè)的重要形式,進(jìn)行跳躍行走的動(dòng)力學(xué)、導(dǎo)航和控制策略研究是進(jìn)行小行星探測(cè)器方案設(shè)計(jì)的基礎(chǔ)研究工作和設(shè)計(jì)依據(jù)。本文即對(duì)此展開研究,主要研究?jī)?nèi)容有:首先進(jìn)行小行星探測(cè)器跳躍行走方案的動(dòng)力學(xué)建模。建立跳躍探測(cè)器的3D動(dòng)力學(xué)模型,探測(cè)器通過(guò)飛輪加速產(chǎn)生的反作用力矩起跳,并在小行星表面跳躍行走直至停止,探測(cè)器與小行星表面的法向接觸力采用基于Hertz定律和非線性阻尼函數(shù)的非線性彈簧-阻尼模型,切向接觸力采用Karnopp摩擦力模型,最后進(jìn)行數(shù)學(xué)仿真以驗(yàn)證方案的可實(shí)現(xiàn)性。然后研究小行星探測(cè)器跳躍行走運(yùn)動(dòng)的導(dǎo)航系統(tǒng)。由于加速度計(jì)低成本、小體積和低重量等優(yōu)點(diǎn),本文基于無(wú)陀螺捷聯(lián)慣性導(dǎo)航系統(tǒng)的導(dǎo)航原理,結(jié)合小行星跳躍探測(cè)器的實(shí)際應(yīng)用情況,提出一種十二加速度計(jì)+單速率陀螺儀的導(dǎo)航配置方案,對(duì)探測(cè)器在小行星表面的跳躍行走運(yùn)動(dòng)進(jìn)行導(dǎo)航。然后對(duì)角速度的解算方法進(jìn)行研究,提出一種采用單速率陀螺儀的開方法來(lái)解算角速度,并設(shè)計(jì)出卡爾曼濾波器,以此提高角速度的解算精度。根據(jù)解算出的角速度和碰撞前的運(yùn)動(dòng)參數(shù),本文基于沖量理論提出三種方法來(lái)獲取碰撞后速度和位置的導(dǎo)航信息,分析三種方法的優(yōu)缺點(diǎn),并進(jìn)行仿真驗(yàn)證。最后研究跳躍探測(cè)器在小行星表面的運(yùn)動(dòng)規(guī)劃與控制。主要研究能夠使探測(cè)器能夠跳躍的飛輪所需要產(chǎn)生的力矩,探索施加力矩與探測(cè)器跳躍瞬間運(yùn)動(dòng)參數(shù)的關(guān)系。然后研究在小行星環(huán)境中跳躍探測(cè)器能夠以穩(wěn)定的姿態(tài)進(jìn)行探測(cè)的合理控制策略,分析有無(wú)考慮飛輪特性時(shí)采用PD控制的仿真結(jié)果,并就解決飛輪摩擦力矩干擾提出一種PID控制策略,仿真結(jié)果表明該控制策略能夠克服飛輪摩擦力矩的干擾,從而能夠使跳躍探測(cè)器能夠以穩(wěn)定的姿態(tài)飛行。
[Abstract]:Asteroid exploration is a new developing direction in space exploration nowadays, and it is of great significance for the exploration and development of planets to patrol the asteroid surface. Compared with wheeled detectors, the leaping walking scheme of asteroid detectors can adapt to the microgravity environment of asteroid surface, and is an important form of asteroid surface detection in the future. The research of navigation and control strategy is the basic research work and design basis for the scheme design of asteroid probe. The main contents of this paper are as follows: firstly, the dynamic modeling of the asteroid detector leaping walking scheme is carried out. A 3D dynamic model of the hopping detector is established, which takes off the reaction torque generated by the flywheel and jumps on the surface of the asteroid until it stops. The normal contact force between the detector and the asteroid surface is based on the nonlinear spring-damping model based on Hertz's law and nonlinear damping function, and the Karnopp friction model is used for the tangential contact force. Finally, the mathematical simulation is carried out to verify the realizability of the scheme. Then the navigation system of the asteroid probe is studied. Due to the advantages of low cost, small volume and low weight of accelerometer, this paper is based on the navigation principle of gyroscope free strapdown inertial navigation system, combined with the practical application of asteroid hopping detector. This paper presents a navigation configuration scheme for 12 accelerometers with single rate gyroscopes, which can navigate the hopping motion of the detectors on the surface of asteroids. Then, the calculation method of angular velocity is studied, and an open method of single rate gyroscope is proposed to solve the angular velocity, and a Kalman filter is designed to improve the accuracy of angular velocity calculation. Based on the calculated angular velocity and the motion parameters before collision, this paper proposes three methods based on impulse theory to obtain the navigation information of velocity and position after collision, analyzes the advantages and disadvantages of the three methods, and carries out simulation verification. Finally, the motion planning and control of jumping detectors on asteroid surface are studied. The torque produced by the flywheel which can make the detector jump is studied in this paper. The relationship between the applied torque and the instantaneous motion parameters of the detector is explored. Then the reasonable control strategy of jumping detector in asteroid environment is studied, and the simulation results of PD control are analyzed when the flywheel characteristics are considered or not. A pid control strategy is proposed to solve the friction moment disturbance of flywheel. The simulation results show that the control strategy can overcome the interference of friction torque of flywheel and make the hopping detector fly in a stable attitude.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:V448.2
【引證文獻(xiàn)】
相關(guān)會(huì)議論文 前1條
1 岳映章;葛文杰;柏龍;;行星探測(cè)機(jī)器人的移動(dòng)技術(shù)對(duì)比分析[A];中國(guó)宇航學(xué)會(huì)深空探測(cè)技術(shù)專業(yè)委員會(huì)第三屆學(xué)術(shù)會(huì)議論文集[C];2006年
,本文編號(hào):2014207
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/2014207.html
最近更新
教材專著