天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 航空航天論文 >

轉(zhuǎn)靜子交界面處理方法和湍流模型對(duì)壓氣機(jī)數(shù)值計(jì)算影響研究

發(fā)布時(shí)間:2018-04-30 13:18

  本文選題:NASA + Stage ; 參考:《南昌航空大學(xué)》2016年碩士論文


【摘要】:隨著計(jì)算流體力學(xué)的不斷發(fā)展,越來(lái)越多的轉(zhuǎn)靜子交界面處理方法和湍流模型被應(yīng)用于葉輪機(jī)械的數(shù)值計(jì)算中,然而不同的轉(zhuǎn)靜子交界面處理方法和湍流模型對(duì)葉輪機(jī)械數(shù)值計(jì)算精度具有較大的影響。本文以NASA Stage 35軸流式壓氣機(jī)為研究對(duì)象,在考查網(wǎng)格密度對(duì)計(jì)算精度影響的基礎(chǔ)上,選取合適的網(wǎng)格密度開(kāi)展了不同轉(zhuǎn)靜子交界面處理方法和湍流模型對(duì)壓氣機(jī)的數(shù)值計(jì)算影響的研究。在轉(zhuǎn)靜子交界面處理方法的對(duì)比分析中,對(duì)NUMECA新推出的二維無(wú)反射處理方法與常用的周向守恒型連接面和完全非匹配混合面處理方法進(jìn)行了對(duì)比,探討了三種混合平面法對(duì)NASA Stage 35壓氣機(jī)數(shù)值模擬的影響,結(jié)論如下:(1)對(duì)于絕熱等熵效率的預(yù)測(cè),二維無(wú)反射相對(duì)于周向守恒型連接面和完全非匹配混合面更接近實(shí)驗(yàn)值;對(duì)于總壓比的預(yù)測(cè),在靠近峰值效率點(diǎn)附近二維無(wú)反射預(yù)測(cè)精度高,而在失速工況附近二維無(wú)反射預(yù)測(cè)精度相對(duì)較低。(2)對(duì)比靜子出口總壓、總溫、相對(duì)氣流角和相對(duì)馬赫數(shù)沿徑向分布的計(jì)算精度,周向守恒型連接面和完全非匹配混合面預(yù)測(cè)效果相一致,但精度低于二維無(wú)反射計(jì)算結(jié)果。(3)對(duì)于交界面兩側(cè)總溫和總壓的徑向分布預(yù)測(cè),三種混合平面法都不能保證總壓和總溫的守恒,但是上、下游的總壓和總溫變化很小。(4)通過(guò)子午面熵云圖和轉(zhuǎn)子、靜子中間截面熵值的徑向分布對(duì)比分析得到,周向守恒型連接面和完全非匹配混合面熵值變化相一致,二維無(wú)反射熵增最小,說(shuō)明二維無(wú)反射預(yù)測(cè)NASA Stage35壓氣機(jī)帶來(lái)的損失小。(5)通過(guò)葉根、葉中以及葉尖截面的相對(duì)馬赫數(shù)云圖對(duì)比分析,發(fā)現(xiàn)在葉根和葉中截面上,三種方法精度一致;但在葉尖截面上,周向守恒型連接面預(yù)測(cè)的轉(zhuǎn)子葉片吸力面氣流分離更明顯,完全非匹配混合面在下游靜子通道內(nèi)相對(duì)馬赫數(shù)等值線更密集。在湍流模型對(duì)壓氣機(jī)的數(shù)值計(jì)算影響方面,研究了Baldwin-Lomax、Spalart-Allmaras、K-epsilon(Extend Wall Function)、K-epsilon(Low Re Yang-Shih)、Shear Stress Transport(SST)和EARSM六種湍流模型對(duì)NASA Stage35壓氣機(jī)數(shù)值模擬的影響,結(jié)論如下:(1)通過(guò)阻塞點(diǎn)、峰值效率點(diǎn)、失速點(diǎn)三種典型工況下的流量、總壓比和絕熱等熵效率計(jì)算結(jié)果的對(duì)比分析可知,不同工況下各個(gè)湍流模型預(yù)測(cè)精度不同,無(wú)法確定NASA Stage35壓氣機(jī)數(shù)值模擬的最佳湍流模型。(2)從阻塞點(diǎn)到失速點(diǎn)的多工況計(jì)算結(jié)果表明,Spalart-Allmaras模型和SST模型計(jì)算精度相對(duì)較好。(3)通過(guò)對(duì)阻塞點(diǎn)、峰值效率點(diǎn)、失速點(diǎn)三種典型工況下徑向性能參數(shù)分析可知,SST模型計(jì)算精度總體上好于Spalart-Allmaras模型。(4)通過(guò)對(duì)近失速工況下0.99葉高處相對(duì)馬赫數(shù)云圖對(duì)比分析可知,Baldwin-Lomax模型預(yù)測(cè)的激波強(qiáng)度最強(qiáng),K-epsilon模型預(yù)測(cè)激波強(qiáng)度較弱;六種湍流模型在轉(zhuǎn)子近壓力側(cè)和靠近轉(zhuǎn)子、靜子尾緣處都出現(xiàn)了低能區(qū),其中Baldwin-Lomax、SST和Spalart-Allmaras較小,K-epsilon模型低能區(qū)范圍最廣。(5)通過(guò)對(duì)近失速工況下轉(zhuǎn)子吸力面極限流線圖對(duì)比分析可知,K-epsilon(Low Re Yang-Shih)模型在葉頂發(fā)生了完全分離,而其他五種模型在葉頂處發(fā)生了分離,但流動(dòng)很快再附。
[Abstract]:With the continuous development of computational fluid mechanics, more and more hydrostatic interface treatment methods and turbulence models have been applied to the numerical calculation of turbomachinery. However, different hydrostatic and stator interface treatment methods and turbulence models have great influence on the numerical accuracy of turbomachinery. In this paper, the NASA Stage 35 axial flow compressor is used in this paper. For the research object, on the basis of examining the influence of grid density on the accuracy of calculation, the influence of different rotor interface treatment methods and turbulence models on the numerical calculation of the compressor is carried out by selecting suitable grid density. In the comparison and analysis of the treatment method of the stator cross interface, the new two-dimensional non reflective processing side of NUMECA is introduced. The method is compared with the commonly used circumferential conservation and completely unmatched mixed surface treatment methods, and the influence of three kinds of mixed plane method on the numerical simulation of NASA Stage 35 compressor is discussed. The conclusion is as follows: (1) the prediction of adiabatic isentropic efficiency, the two dimensional non reflection is relative to the circumferential conservation type and the completely unmatched mixture surface. It is close to the experimental value; for the prediction of the total pressure ratio, the accuracy of the two-dimensional non reflection prediction near the peak efficiency point is high, while the two-dimensional non reflection prediction accuracy near the stall conditions is relatively low. (2) the calculation accuracy of the total pressure, the total temperature, the relative air angle and the relative Maher number along the path distribution, and the circumferential conservation type connection surface and complete comparison. The prediction results of the mismatched mixed surface are the same, but the accuracy is lower than the two dimensional non reflection calculation results. (3) for the radial distribution of the total pressure on both sides of the interface, the three mixed plane methods can not guarantee the conservation of the total pressure and the total temperature. However, the total pressure and total temperature change in the lower reaches are very small. (4) through the meridian entropy cloud and the rotor, the stator is in the stator. The comparison and analysis of the radial distribution of the entropy value of the cross section shows that the circumferential conservation type connection surface is in accordance with the entropy change of the completely unmatched mixed surface, and the two-dimensional non reflection entropy increase is the smallest, which indicates that the loss of the two-dimensional non reflective prediction NASA Stage35 compressor is small. (5) the comparison and analysis of the relative Maher number of the leaf tip and the leaf tip cross section by the leaf root, the leaf root, the leaf tip section and the leaf tip section are compared and analyzed. The accuracy of the three methods is the same on the cross section of the leaf root and leaf, but on the tip section, the flow separation of the suction surface of the rotor blade is more obvious, and the relative Maher number of the completely unmatched mixed surface is more dense in the downstream stator channel. The effects of Baldwin-Lomax, Spalart-Allmaras, K-epsilon (Extend Wall Function), K-epsilon (Low Re Yang-Shih), Shear Stress and six turbulence models on the numerical simulation of compressor are concluded as follows: (1) flow, total pressure ratio and adiabatic ratio of three typical operating conditions through blocking point, peak efficiency point, and stall point. The comparison analysis of the results of the isentropic efficiency shows that the prediction accuracy of the turbulence models under different working conditions is different, and the optimal turbulence model of the NASA Stage35 compressor numerical simulation can not be determined. (2) the calculation results from the blocking point to the stall point show that the calculation precision of the Spalart-Allmaras model and the SST model is relatively good. (3) through the resistance to the resistance. The analysis of the radial performance parameters in three typical working conditions of the peak efficiency point and the stall point can be seen that the calculation accuracy of the SST model is better than that of the Spalart-Allmaras model. (4) it is known that the intensity of the shock wave of the Baldwin-Lomax model prediction is the strongest and the K-epsilon model is predicted by the contrast analysis of the Maher number at the height of the 0.99 leaves at the near stall condition. The wave intensity is weak; the six turbulence models have low energy areas at the near pressure side and the rotor near the rotor and the stator and tail edge of the rotor, of which Baldwin-Lomax, SST and Spalart-Allmaras are smaller, and the K-epsilon model low energy area is the most widely. (5) K-epsilon (Low Re Yang-Shih) is known by the comparison and analysis of the limit streamline diagram of the rotor suction surface under the near stall conditions. The model completely separated at the top of the leaf, while the other five models were separated at the top of the leaf, but the flow soon reattached.

【學(xué)位授予單位】:南昌航空大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:V233

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 劉波,王強(qiáng);不同分流比下風(fēng)扇/壓氣機(jī)組合體性能預(yù)估研究[J];西北工業(yè)大學(xué)學(xué)報(bào);2001年03期

2 王華青,陳矛章;高負(fù)荷高通流跨音壓氣機(jī)的研制和應(yīng)用[J];航空動(dòng)力學(xué)報(bào);2003年02期

3 陳懋章;劉寶杰;;中國(guó)壓氣機(jī)基礎(chǔ)研究及工程研制的一些進(jìn)展[J];航空發(fā)動(dòng)機(jī);2007年01期

4 汪偉;何立明;于錦祿;;壓氣機(jī)虛擬試驗(yàn)仿真平臺(tái)設(shè)計(jì)與實(shí)現(xiàn)[J];空軍工程大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年03期

5 劉濱春;;壓氣機(jī)級(jí)間引氣對(duì)壓氣機(jī)性能影響的研究[J];中國(guó)科技信息;2008年16期

6 劉波;陳云永;項(xiàng)效昒;侯為民;;對(duì)轉(zhuǎn)壓氣機(jī)數(shù)值模擬及實(shí)驗(yàn)研究[J];推進(jìn)技術(shù);2008年04期

7 陶立權(quán);孫鵬;楊坤;;風(fēng)扇/壓氣機(jī)進(jìn)口畸變問(wèn)題數(shù)值研究進(jìn)展[J];中國(guó)民航大學(xué)學(xué)報(bào);2010年02期

8 陳云永;劉波;謝彥文;;對(duì)轉(zhuǎn)壓氣機(jī)特性影響因素分析研究[J];工程熱物理學(xué)報(bào);2010年07期

9 李冬;李本威;楊欣毅;鄧斌;;壓氣機(jī)性能衰退和清洗恢復(fù)仿真研究[J];計(jì)算機(jī)仿真;2010年09期

10 苗厚武,蔡曉鐘,高金滿;端削技術(shù)在跨音速壓氣機(jī)上的應(yīng)用[J];燃?xì)鉁u輪試驗(yàn)與研究;1996年01期

相關(guān)會(huì)議論文 前10條

1 浦鵬;孫濤;李冬;;壓氣機(jī)性能影響因素研究[A];中國(guó)航空學(xué)會(huì)第七屆動(dòng)力年會(huì)論文摘要集[C];2010年

2 沈騰;;無(wú)線數(shù)據(jù)傳輸技術(shù)在壓氣機(jī)測(cè)試中的應(yīng)用研究[A];大型飛機(jī)關(guān)鍵技術(shù)高層論壇暨中國(guó)航空學(xué)會(huì)2007年學(xué)術(shù)年會(huì)論文集[C];2007年

3 李建君;顧春偉;;壓氣機(jī)1.5跨音級(jí)內(nèi)部流動(dòng)分析[A];中國(guó)動(dòng)力工程學(xué)會(huì)透平專業(yè)委員會(huì)2007年學(xué)術(shù)研討會(huì)論文集[C];2007年

4 張健新;武卉;高飛龍;;某壓氣機(jī)試驗(yàn)器旁路退喘系統(tǒng)結(jié)構(gòu)設(shè)計(jì)及應(yīng)用[A];第十五屆中國(guó)科協(xié)年會(huì)第13分會(huì)場(chǎng):航空發(fā)動(dòng)機(jī)設(shè)計(jì)、制造與應(yīng)用技術(shù)研討會(huì)論文集[C];2013年

5 朱理;;三次樣條插值函數(shù)算法在壓氣機(jī)性能試驗(yàn)中的應(yīng)用[A];中國(guó)航空學(xué)會(huì)第七屆動(dòng)力年會(huì)論文摘要集[C];2010年

6 朱理;;三次樣條插值函數(shù)算法在壓氣機(jī)性能試驗(yàn)中的應(yīng)用[A];2010航空試驗(yàn)測(cè)試技術(shù)學(xué)術(shù)交流會(huì)論文集[C];2010年

7 郭明;周盛;吳介之;;基于局部動(dòng)力學(xué)的內(nèi)流(風(fēng)扇/壓氣機(jī))氣動(dòng)診斷方法初探[A];2003空氣動(dòng)力學(xué)前沿研究論文集[C];2003年

8 趙連會(huì);何磊;徐強(qiáng);崔耀欣;虎煜;;某型多級(jí)軸流壓氣機(jī)三維CFD流場(chǎng)分析及氣動(dòng)優(yōu)化[A];中國(guó)動(dòng)力工程學(xué)會(huì)透平專業(yè)委員會(huì)2011年學(xué)術(shù)研討會(huì)論文集[C];2011年

9 符嬈;雷勇;;基于HHT的壓氣機(jī)氣動(dòng)失穩(wěn)檢測(cè)技術(shù)研究[A];2010航空試驗(yàn)測(cè)試技術(shù)學(xué)術(shù)交流會(huì)論文集[C];2010年

10 孫明霞;梁春華;;提高軸流壓氣機(jī)穩(wěn)定性的技術(shù)措施[A];中國(guó)航空學(xué)會(huì)第七屆動(dòng)力年會(huì)論文摘要集[C];2010年

相關(guān)重要報(bào)紙文章 前2條

1 高山 張若萌;激揚(yáng)動(dòng)力[N];中國(guó)航空?qǐng)?bào);2011年

2 中航工業(yè)燃?xì)鉁u輪研究院 曹志鵬;未來(lái)高負(fù)荷風(fēng)扇/壓氣機(jī)局部流動(dòng)控制技術(shù)[N];中國(guó)航空?qǐng)?bào);2012年

相關(guān)博士學(xué)位論文 前10條

1 馬寧;高速壓氣機(jī)低速模化相似準(zhǔn)則及軸向縫機(jī)匣處理流動(dòng)機(jī)理研究[D];中國(guó)科學(xué)院研究生院(工程熱物理研究所);2016年

2 高坤華;基于混沌理論的壓氣機(jī)失速預(yù)測(cè)及分析[D];西北工業(yè)大學(xué);2007年

3 趙勇;風(fēng)扇/壓氣機(jī)非設(shè)計(jì)點(diǎn)性能計(jì)算和進(jìn)氣畸變影響預(yù)測(cè)方法研究[D];南京航空航天大學(xué);2008年

4 羌曉青;低反動(dòng)度附面層抽吸式壓氣機(jī)流動(dòng)控制及設(shè)計(jì)方法研究[D];哈爾濱工業(yè)大學(xué);2009年

5 高海洋;畸變條件下端區(qū)流動(dòng)對(duì)壓氣機(jī)穩(wěn)定性影響的機(jī)理研究[D];大連海事大學(xué);2014年

6 羅鉅;高性能風(fēng)扇/壓氣機(jī)三維葉片氣動(dòng)設(shè)計(jì)與實(shí)驗(yàn)研究[D];南京航空航天大學(xué);2013年

7 張環(huán);旋轉(zhuǎn)總壓畸變對(duì)壓氣機(jī)穩(wěn)定性影響的研究[D];南京航空航天大學(xué);2009年

8 龍艷麗;高負(fù)荷氦氣壓氣機(jī)氣動(dòng)設(shè)計(jì)及性能研究[D];哈爾濱工程大學(xué);2012年

9 李亮;葉尖射流對(duì)壓氣機(jī)穩(wěn)定性影響研究[D];南京航空航天大學(xué);2013年

10 屠寶鋒;風(fēng)扇/壓氣機(jī)動(dòng)態(tài)失速過(guò)程和多尺度非定常氣動(dòng)穩(wěn)定性研究[D];南京航空航天大學(xué);2009年

相關(guān)碩士學(xué)位論文 前10條

1 安鑫;跨音壓氣機(jī)邊界層抽吸控制方法研究[D];中國(guó)科學(xué)院研究生院(工程熱物理研究所);2015年

2 管健;旋轉(zhuǎn)沖壓壓縮轉(zhuǎn)子試驗(yàn)系統(tǒng)氣動(dòng)性能數(shù)值研究[D];大連海事大學(xué);2015年

3 梁齊文;燃?xì)廨啓C(jī)壓氣機(jī)改型設(shè)計(jì)方法研究[D];上海交通大學(xué);2015年

4 阮國(guó)輝;跨聲速低反力度壓氣機(jī)動(dòng)葉性能優(yōu)化研究[D];哈爾濱工業(yè)大學(xué);2015年

5 劉斌;亞聲速重復(fù)級(jí)壓氣機(jī)試驗(yàn)臺(tái)氣動(dòng)與結(jié)構(gòu)設(shè)計(jì)[D];大連海事大學(xué);2015年

6 桑晶晶;船用廢氣渦輪增壓器壓氣機(jī)流場(chǎng)及氣動(dòng)噪聲數(shù)值仿真研究[D];江蘇科技大學(xué);2015年

7 胡勇;空氣渦輪火箭組合發(fā)動(dòng)機(jī)總體方案研究與優(yōu)化設(shè)計(jì)[D];國(guó)防科學(xué)技術(shù)大學(xué);2013年

8 劉軍;跨聲速壓氣機(jī)應(yīng)用彎曲葉片的數(shù)值研究[D];大連海事大學(xué);2016年

9 薛嘉麒;組合抽吸對(duì)旋轉(zhuǎn)沖壓壓縮轉(zhuǎn)子性能的影響[D];大連海事大學(xué);2016年

10 蘆建斌;葉輪設(shè)計(jì)對(duì)車用渦輪增壓器壓氣機(jī)的效率及噪聲影響的研究[D];浙江大學(xué);2016年

,

本文編號(hào):1824712

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/1824712.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶6fae0***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com