用于超聲速飛行器的沖壓渦輪發(fā)電系統(tǒng)設(shè)計(jì)研究
本文關(guān)鍵詞: 沖壓渦輪 渦輪發(fā)電 總體設(shè)計(jì) 微型渦輪 數(shù)值模擬 試驗(yàn)研究 子午流道 出處:《南京航空航天大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
【摘要】:近年來(lái)超聲速飛行器在國(guó)防軍事領(lǐng)域的地位逐漸升高,對(duì)其進(jìn)行的研究也越來(lái)越受到重視。沖壓渦輪發(fā)電系統(tǒng)由于重量輕、結(jié)構(gòu)簡(jiǎn)單、綜合效能高等優(yōu)點(diǎn),成為為超聲速飛行器機(jī)載設(shè)備提供電功率的最佳選擇。本文采用數(shù)值模擬與試驗(yàn)手段相結(jié)合的方法進(jìn)行了系統(tǒng)設(shè)計(jì)及核心部件優(yōu)化等研究。主要內(nèi)容如下:1、本文首先完成系統(tǒng)的總體方案與總體結(jié)構(gòu)設(shè)計(jì)。然后詳細(xì)闡述主要部件的設(shè)計(jì)過(guò)程,包括發(fā)電機(jī)的磁路結(jié)構(gòu)、冷卻潤(rùn)滑裝置和主要?dú)鈩?dòng)部件,其中在氣動(dòng)部件設(shè)計(jì)中要考慮各部件之間的匹配。設(shè)計(jì)的冷卻潤(rùn)滑裝置高效地解決了發(fā)電機(jī)的散熱以及軸承的潤(rùn)滑問(wèn)題;設(shè)計(jì)的扇形節(jié)流裝置結(jié)構(gòu)緊湊、調(diào)節(jié)精度高、響應(yīng)時(shí)間短、工作安全可靠。2、采用CFD方法對(duì)各氣動(dòng)部件進(jìn)行數(shù)值模擬計(jì)算,分析部件的流場(chǎng)情況,得到各部件的工作特性。然后將渦輪與蝸殼進(jìn)行CFD聯(lián)算,研究?jī)烧叩钠ヅ涮匦?進(jìn)行渦輪與扇形節(jié)流裝置的數(shù)值模擬聯(lián)算,為控制策略的選擇提供參考。此外還針對(duì)扇形節(jié)流裝置進(jìn)行特定試驗(yàn),并與數(shù)值模擬結(jié)果相對(duì)比,驗(yàn)證了數(shù)值模擬的準(zhǔn)確性。3、對(duì)沖壓渦輪發(fā)電系統(tǒng)進(jìn)行冷態(tài)整機(jī)試驗(yàn)。搭建專門(mén)的試驗(yàn)臺(tái)架,制定詳備的試驗(yàn)和測(cè)量方案,檢測(cè)系統(tǒng)的振動(dòng)情況。試驗(yàn)得到系統(tǒng)在低負(fù)載狀態(tài)下的工作特性,驗(yàn)證了部件的結(jié)構(gòu)強(qiáng)度。4、對(duì)渦輪進(jìn)行優(yōu)化研究。在渦輪出口面積不變的情況下,分析了渦輪轉(zhuǎn)子子午面上下端壁的擴(kuò)張角組合變化對(duì)渦輪性能的影響,結(jié)果表明,不同的上下端壁擴(kuò)張角對(duì)渦輪導(dǎo)向器進(jìn)出口的靜壓分布、導(dǎo)向器喉道處的Ma分布、轉(zhuǎn)子的進(jìn)氣角以及設(shè)計(jì)點(diǎn)渦輪出口的激波強(qiáng)度都有一定的影響,且存在一個(gè)最佳的上下端壁擴(kuò)張角的組合使渦輪在設(shè)計(jì)點(diǎn)及非設(shè)計(jì)點(diǎn)的性能得到提高,在設(shè)計(jì)點(diǎn),最優(yōu)組合比最差組合等熵效率提高0.7%,功率提高0.465kW。
[Abstract]:In recent years, the status of supersonic vehicle in the field of national defense and military has gradually increased, and the research on it has been paid more and more attention. The ramjet turbine power generation system has the advantages of light weight, simple structure, high comprehensive efficiency and so on. It has become the best choice to provide electric power for supersonic aircraft airborne equipment. The system design and core components optimization are studied by the method of numerical simulation and test. The main contents are as follows: 1, this paper. First, the overall scheme and structure design of the system are completed. Then, the design process of the main components is described in detail. Including generator magnetic circuit structure, cooling lubrication device and main pneumatic components, In the design of pneumatic components, the matching of each component should be considered. The cooling and lubricating device designed can efficiently solve the problems of heat dissipation of generator and lubrication of bearings, and the designed fan throttling device has compact structure and high adjusting precision. The response time is short, the work is safe and reliable. 2. The CFD method is used to simulate and calculate the aerodynamic components, the flow field of the components is analyzed, and the working characteristics of the components are obtained. Then the turbine and the volute are combined with CFD. The matching characteristics of the two are studied, and the numerical simulation of turbine and sector throttle is carried out to provide a reference for the selection of control strategy. In addition, a specific experiment is carried out for the sector throttle, and the results are compared with the results of numerical simulation. The veracity of numerical simulation is verified. 3. The cold test of punching turbine power generation system is carried out. A special test bench is built, and a detailed test and measurement scheme is established. The vibration of the system is detected. The working characteristics of the system under low load are obtained, and the structural strength of the components is verified. 4. The optimization study of the turbine is carried out. When the turbine outlet area is constant, The influence of the expansion angle combination of the upper and lower end wall of the turbine rotor on the turbine performance is analyzed. The results show that the static pressure distribution at the inlet and outlet of the turbine guide and the Ma distribution at the throat of the turbine guide are affected by the expansion angles of the upper and lower end walls of the turbine rotor. The inlet angle of the rotor and the shock intensity at the outlet of the design point have a certain influence, and the performance of the turbine at the design point and non-design point can be improved by the combination of an optimal expansion angle of the upper and lower end wall. Compared with the worst combination, the optimal combination increases the Isentropic efficiency by 0.7 and the power by 0.465kW.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:V242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 羅國(guó)樞;;離心風(fēng)機(jī)蝸殼設(shè)計(jì)優(yōu)化[J];科技風(fēng);2014年08期
2 張丹;周大漢;;微型燃?xì)廨啓C(jī)發(fā)電機(jī)組發(fā)展及國(guó)產(chǎn)化[J];上海節(jié)能;2013年04期
3 李東杰;;輔助動(dòng)力裝置的應(yīng)用現(xiàn)狀和發(fā)展趨勢(shì)[J];航空科學(xué)技術(shù);2012年06期
4 李博;章弘;唐宏剛;周宇穗;;APU空中起動(dòng)性能及其控制規(guī)律試驗(yàn)研究[J];航空科學(xué)技術(shù);2011年05期
5 蔡亞梅;汪立萍;;美國(guó)的高超聲速飛行器發(fā)展計(jì)劃及關(guān)鍵技術(shù)分析[J];航天制造技術(shù);2010年06期
6 黃偉;羅世彬;王振國(guó);;臨近空間高超聲速飛行器關(guān)鍵技術(shù)及展望[J];宇航學(xué)報(bào);2010年05期
7 齊學(xué)義;趙強(qiáng);馬惠萍;張慶;;全蝸殼的非圓形斷面水力設(shè)計(jì)及其CFD分析驗(yàn)證[J];蘭州理工大學(xué)學(xué)報(bào);2009年02期
8 黃國(guó)平;梁德旺;何志強(qiáng);;大型飛機(jī)輔助動(dòng)力裝置與微型渦輪發(fā)動(dòng)機(jī)技術(shù)特點(diǎn)對(duì)比[J];航空動(dòng)力學(xué)報(bào);2008年02期
9 安柏濤,韓萬(wàn)金,王松濤,王仲奇;大擴(kuò)張角子午流道型線對(duì)損失的影響[J];推進(jìn)技術(shù);2001年03期
10 吳猛,王松濤,王仲奇,馮國(guó)泰;子午擴(kuò)張對(duì)渦輪內(nèi)旋渦結(jié)構(gòu)影響的數(shù)值模擬[J];航空動(dòng)力學(xué)報(bào);2000年04期
相關(guān)博士學(xué)位論文 前1條
1 王志強(qiáng);直驅(qū)式永磁風(fēng)力發(fā)電系統(tǒng)多重化功率變換器運(yùn)行控制[D];天津大學(xué);2012年
相關(guān)碩士學(xué)位論文 前8條
1 崔丕龍;微型軸流渦輪掠葉型及后加載葉型設(shè)計(jì)技術(shù)研究[D];南京航空航天大學(xué);2013年
2 張遠(yuǎn)森;微型渦輪發(fā)電機(jī)雙級(jí)軸流渦輪設(shè)計(jì)[D];南京航空航天大學(xué);2012年
3 徐建淳;高速永磁發(fā)電系統(tǒng)及其調(diào)壓器的研究[D];南京航空航天大學(xué);2012年
4 郭銘;含分布式發(fā)電系統(tǒng)的配電網(wǎng)保護(hù)研究[D];上海交通大學(xué);2010年
5 魯中華;導(dǎo)彈通用彈道模型建立及仿真驗(yàn)證[D];國(guó)防科學(xué)技術(shù)大學(xué);2009年
6 劉勛;低雷諾數(shù)低壓渦輪氣動(dòng)性能分析[D];哈爾濱工業(yè)大學(xué);2008年
7 楊銳;沖壓渦輪進(jìn)氣段氣動(dòng)性能研究及風(fēng)力機(jī)二維翼型數(shù)值模擬[D];南京航空航天大學(xué);2008年
8 傅達(dá)旺;某型沖壓渦輪性能計(jì)算及分析[D];南京航空航天大學(xué);2007年
,本文編號(hào):1509760
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/1509760.html