天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 航空航天論文 >

結(jié)構(gòu)阻尼樹脂基復(fù)合材料的結(jié)構(gòu)與性能研究

發(fā)布時(shí)間:2018-01-19 14:08

  本文關(guān)鍵詞: 結(jié)構(gòu)阻尼復(fù)合材料 離位增韌 尼龍無紡布 芳綸無紡布 PVDF VGCF FEM 出處:《浙江大學(xué)》2015年博士論文 論文類型:學(xué)位論文


【摘要】:近年來,隨著航空航天飛行器向高速、輕質(zhì)和多功能化方向發(fā)展,傳統(tǒng)結(jié)構(gòu)材料在減重和減振降噪方面面臨著更大的挑戰(zhàn)。尤其隨著纖維增強(qiáng)復(fù)合材料在航空航天領(lǐng)域應(yīng)用比重的迅速提升,開發(fā)兼具高力學(xué)性能和振動(dòng)阻尼性能的新型結(jié)構(gòu)-阻尼復(fù)合材料成為研究的熱點(diǎn)之一。結(jié)構(gòu)阻尼復(fù)合材料屬于結(jié)構(gòu)功能一體化復(fù)合材料之一,其應(yīng)用范圍涉及航天航空、交通運(yùn)輸、電力電子以及儀器儀表等工業(yè)領(lǐng)域,對于國家經(jīng)濟(jì)的發(fā)展和人們生活質(zhì)量的提高起到重要的作用。傳統(tǒng)的結(jié)構(gòu)阻尼復(fù)合材料制備是將結(jié)構(gòu)材料與高阻尼的黏彈性材料粘合在一起。由結(jié)構(gòu)材料提供強(qiáng)度和剛度,黏彈性材料提供阻尼性能。這種復(fù)合方式目前暴露出的主要問題是結(jié)構(gòu)的力學(xué)性能和耐熱性能的下降及工藝性和服役性變差。而最新發(fā)展的其他共固化復(fù)合材料(蜂窩、智能材料、金屬泡沫、納米材料)又存在增厚增重大、工藝復(fù)雜和成本增加的弊端。結(jié)構(gòu)阻尼材料研制中關(guān)鍵問題是選擇與結(jié)構(gòu)層匹配的阻尼層材料并能形成很好的界面結(jié)構(gòu)。從材料層面來說,一方面阻尼層材料應(yīng)與結(jié)構(gòu)層樹脂具有較好的界面結(jié)合力和不沖突的成型工藝,另一方面阻尼層應(yīng)具有相對較高的力學(xué)性能、阻尼性能和耐熱性能。從結(jié)構(gòu)層面來說,結(jié)構(gòu)層和阻尼層最好形成互穿網(wǎng)絡(luò)結(jié)構(gòu),這樣能減少界面處應(yīng)力集中,同時(shí)改善應(yīng)力的傳遞效率,充分發(fā)揮阻尼層的阻尼效果。此外,材料的阻尼性能和斷裂韌性關(guān)系密切,相對成熟的增韌技術(shù)可用于結(jié)構(gòu)阻尼復(fù)合材料的開發(fā),尤其是通過力學(xué)性能優(yōu)異的熱塑性聚合物離位增韌復(fù)合材料和納米級碳材料如納米碳纖維、碳納米管等增韌均可以在保證復(fù)合材料力學(xué)性能的前提下明顯提高其斷裂韌性。因此,本論文的基本思路即是從材料層面上篩選與基體樹脂相匹配且具有較好離位增韌效果的幾種多孔的熱塑性樹脂無紡布(本文選用尼龍和芳綸兩種無紡布)作為阻尼材料和離位增韌材料,通過與基體樹脂在復(fù)合材料的層間形成多相連續(xù)的互穿網(wǎng)絡(luò)結(jié)構(gòu),在離位增韌改性的同時(shí)提高復(fù)合材料的阻尼性能。同時(shí),為進(jìn)一步提高體系的阻尼性能和斷裂韌性,通過篩選將結(jié)晶型熱塑性聚合物PVDF和納米碳材料VGCF負(fù)載在無紡布材料上,研究不同增韌和阻尼材料的協(xié)同增韌和阻尼改性效果。另外,考慮到近年來綠色復(fù)合材料的發(fā)展越來越受到人們的重視,而結(jié)構(gòu)阻尼材料的開發(fā)中也應(yīng)考慮綠色環(huán)保的設(shè)計(jì)原則,本文還篩選了力學(xué)性能和阻尼性能相對較好的苧麻纖維和黃麻纖維來制備綠色結(jié)構(gòu)阻尼復(fù)合材料。由于阻尼層的加入方式和阻尼性能對結(jié)構(gòu)阻尼材料的整體阻尼性能有直接影響,為進(jìn)一步研究其變化規(guī)律,本論文在實(shí)驗(yàn)的基礎(chǔ)上對結(jié)構(gòu)阻尼復(fù)合材料的兩種阻尼測試過程進(jìn)行了有限元模擬分析。通過ANSYS軟件建立了結(jié)構(gòu)阻尼復(fù)合材料的阻尼因子和模態(tài)頻率的虛擬測試方法,通過改變阻尼層的各物理屬性可以非常方便的考察阻尼層的變化對復(fù)合材料整體性能的影響。這種通過有限元分析建立的虛擬測試技術(shù)具有很強(qiáng)的實(shí)用性能,可以大大縮短了材料開發(fā)的時(shí)間周期,為結(jié)構(gòu)阻尼材料的研究提供方便。本論文研究主要得到以下結(jié)論:1)尼龍無紡布能夠在離位增韌復(fù)合材料的同時(shí)明顯提高復(fù)合材料的損耗因子且不會造成復(fù)合材料力學(xué)性能的明顯下降。其中,復(fù)合材料的阻尼性能和力學(xué)性能與阻尼層的位置和體積分?jǐn)?shù)密切相關(guān)。通過在尼龍無紡布上負(fù)載PVDF能進(jìn)一步明顯提高共固化復(fù)合材料的振動(dòng)衰減性能和層間斷裂韌性,插入7層時(shí)損耗因子達(dá)到0.0121,比空白樣品提高了152.1%,其GⅠC和GⅡC分別達(dá)到1700.0J/m2和2829.0J/m2,較空白樣品提高了4.6倍和2.9倍。通過在尼龍無紡布上負(fù)載PVDF/VGCF能進(jìn)一步提高結(jié)構(gòu)阻尼復(fù)合材料的耐熱性能、高溫段阻尼性能、導(dǎo)電性能,但對復(fù)合材料的力學(xué)性能沒有明顯提高,這可能與納米材料的分散性差、容易團(tuán)聚有關(guān)。2)芳綸無紡布同樣能夠在不明顯降低復(fù)合材料的力學(xué)性能的前提下同步提高復(fù)合材料的斷裂韌性和阻尼性能。與尼龍無紡布相比,ANF離位增韌結(jié)構(gòu)阻尼復(fù)合材料的力學(xué)性能更好,但界面結(jié)合性相對較差,I型、II型層間斷裂韌性和CAI較低,但界面阻尼作用反而較高。3)通過苧麻纖維布/碳纖維布/玻璃纖維布的混雜鋪層能夠平衡力學(xué)性能和阻尼性能之間的矛盾,實(shí)現(xiàn)材料阻尼性能和力學(xué)性能的可控調(diào)節(jié),充分發(fā)揮復(fù)合材料可設(shè)計(jì)性強(qiáng)的優(yōu)勢。其中"RCRCR"鋪層的復(fù)合材料的損耗因子達(dá)到0.0057,比純碳纖維布復(fù)合材料的0.0018提高了2.2倍,而拉伸強(qiáng)度達(dá)到381.6MPa,比純苧麻纖維板提高了4.6倍。"RCRCR"型復(fù)合材料的損耗因子達(dá)到0.0101,比純玻璃纖維布復(fù)合材料提高了1.4倍,而拉伸強(qiáng)度達(dá)到278MPa,比純苧麻纖維板提高了3倍多。4)利用ANSYS軟件建立了兩種虛擬阻尼性能測試方法即虛擬自由振動(dòng)衰減法和虛擬強(qiáng)迫共振掃頻法。通過對兩類結(jié)構(gòu)阻尼復(fù)合材料的阻尼因子、共振頻率及模態(tài)損耗因子的實(shí)測結(jié)果與虛擬測試結(jié)果對比,驗(yàn)證了有限元模擬的可行性,同時(shí)對不同的混雜鋪層方式和阻尼層不同的物理性能對結(jié)構(gòu)阻尼復(fù)合材料的阻尼性能的影響進(jìn)行了研究。結(jié)果表明,混雜鋪層復(fù)合材料的剛度與最外層材料的模量密切相關(guān),而阻尼性能與阻尼層的體積分?jǐn)?shù)和分布有關(guān),當(dāng)其位于正應(yīng)力和剪切力最大的表面和中性面時(shí)能夠發(fā)揮最大的阻尼效果。
[Abstract]:In recent years, along with the development of aerospace vehicles to high-speed, lightweight and multifunctional development of traditional structural materials are facing greater challenges in weight loss and reduction. Especially with fiber reinforced composite materials in aerospace applications rapidly enhance the proportion of the new structure, develop both performance and vibration damping properties of high mechanical damping the composite material has become one of the hot research. Structural damping composites belongs to the composite integrated structure and function of the application scope of aerospace, transportation, power electronics and instrumentation industries, an important role for the development of national economy and improvement of people's quality of life. The traditional structural damping composites the preparation is structural materials and high damping viscoelastic materials together. The structure provided by the material strength and stiffness of viscoelastic material. For the main problem of the composite damping performance. The exposed is the mechanical properties and heat resistance of the structure and process of the decline and the service becomes poor. And the latest development of other co cured composite (cellular, intelligent materials, metal foam, nano materials) has increased thickening of major, complex process and defects the increased cost of structural damping material in the development. The key problem is the selection and structure layer, damping layer material and can form a good interface structure. From the material level, a damping layer material and structure layer of resin has good adhesion and conflict forming process, on the other hand, the damping layer should be with relatively high mechanical properties, damping properties and heat resistance. From the aspect of structure, structure layer and damping layer is preferably formed of interpenetrating network structure, this can reduce the stress concentration at the interface, at the same time improve The stress transfer efficiency, give full play to the damping effect of the damping layer. In addition, the relationship between damping properties and fracture toughness of the material closely, the relatively mature toughening technology can be used for the development of structural damping composites, especially the excellent mechanical properties of thermoplastic polymer from a composite toughening and nano carbon materials such as carbon nano fiber, carbon nanotubes can significantly improve the toughening in ensuring the premise of fracture toughness of composite mechanical properties. Therefore, the basic idea of this paper is to select some porous matrix resin and match out of position and has good toughening effect from the material level of thermoplastic resin and aromatic nylon non-woven (this selection two) as a non-woven aramid damping material and ex situ toughening materials, and through the formation of matrix resin in the composite layer between the interpenetrating network structure is continuous, in the off position by At the same time toughening modification to improve the damping properties of the composites. At the same time, in order to further improve the damping properties and fracture toughness of the system, through the screening of the crystalline thermoplastic polymer PVDF and nano carbon materials VGCF load in non-woven materials, research different toughening and damping material synergitic toughening and damping modification effect. In addition, considering the recent development of green composites are more and more attention, and the development of structural damping material also should consider the design principles of green environmental protection, the paper also selected relatively good mechanical properties and damping properties of ramie fiber and jute fiber to produce green structural damping composites due to the effect of damping layer. The addition method and the damping properties of structural damping material overall damping performance, for further study on the regularity of the complex structure of the damping on the basis of experiment A finite element simulation analysis of two kinds of composite damping test process. Through the ANSYS software to build a virtual test method of structural damping composite damping factor and modal frequency, by changing the physical properties of the damping layer can affect the change of damping layer is very convenient to study the overall performance of the composite material has very practical performance. The virtual test technology that through the finite element analysis of the material, can greatly shorten the development cycle time, to provide convenience for the study of structural damping materials. This paper mainly gets the following conclusions: 1) to nylon non-woven fabric decreased significantly in the ex situ toughening composite material increases while the loss factor of composite material and not due to the mechanical properties of the composites. The composites damping properties and mechanical properties and damping layer position and volume fraction. Cut through. In the nylon non-woven fabric can further improve the load of PVDF co curing composite vibration attenuation performance and interlaminar fracture toughness, 7 layer insertion loss factor reached 0.0121, 152.1% higher than the blank sample, the C G I and G II C reached 1700.0J/m2 and 2829.0J/m2, increased by 4.6 compared with the blank sample and 2.9 times. Through the nylon non-woven fabric loaded with PVDF/VGCF can further improve the heat resistance of structural damping composites, conductive properties of damping properties, high temperature, but the mechanical properties of the composites did not increase obviously with the dispersion of nano materials is poor, easy to agglomerate on.2 aramid fiber non-woven fabric can also sync) to improve the fracture toughness and damping properties of the composite materials without significantly decreased the mechanical properties of the composites. Compared with nylon fabric, ANF ex situ toughening structural damping composite material The better mechanical performance, but the interface is relatively poor, I type, II type and CAI interlaminar fracture toughness is low, but the interface damping effect of higher.3) by the mixed layer of ramie cloth / carbon fiber / glass fiber cloth can balance the contradiction between the mechanical properties and damping properties, controllable damping the performance and the mechanical properties of the material regulation, give full play to the advantages of design and strong composite materials. The loss factor of composite RCRCR layer reached 0.0057, more than 0.0018 pure carbon fiber composite material was increased by 2.2 times, while the tensile strength is 381.6MPa, than the pure ramie fiber board is increased by 4.6 times ". The loss factor of RCRCR type composite reached 0.0101, than the pure glass fiber composites increased 1.4 times, while the tensile strength reached 278MPa, increased 3 times more.4 than pure ramie fiber board) to establish two kinds of virtual using ANSYS software Testing method for damping properties of virtual free vibration attenuation method and virtual forced resonance frequency sweep method. The damping factor of two kinds of structural damping composites, comparing the measured results of resonance frequency and the modal loss factor and virtual test results, verify the feasibility of finite element simulation, and the influence of different damping properties of hybrid layer and the physical properties of different damping layer on structural damping composites were studied. The results show that the hybrid composite stiffness and the outer layer material modulus is closely related to the volume fraction and distribution of damping capacity and damping layer, when it is located in the normal stress and the maximum shearing force the surface and the neutral surface can play a damping effect is the biggest.

【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:V214.8;TB33

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 ;科技動(dòng)態(tài)[J];中國高校技術(shù)市場;1997年08期

2 李沛勇,戴圣龍,劉大博,,柴世昌,李裕仁;低密阻尼金屬/金屬復(fù)合體材料的組織與性能研究[J];材料工程;1999年05期

3 吳坪安;曹占義;包曉軍;孫喜良;;鋼/鋅復(fù)合材料阻尼性能研究[J];材料工程;2006年S1期

4 王金香;韓福生;;多孔銅的阻尼性能研究[J];金屬熱處理;2012年06期

5 王以理;復(fù)合阻尼鋼板的結(jié)構(gòu)與性能特點(diǎn)[J];噪聲與振動(dòng)控制;1996年05期

6 李劍芝;孫寶臣;;單向纖維復(fù)合材料的低頻阻尼性能(英文)[J];傳感技術(shù)學(xué)報(bào);2014年08期

7 孫立娜;;纖維增強(qiáng)復(fù)合材料阻尼性能的研究[J];纖維復(fù)合材料;2012年01期

8 于學(xué)勇;程鳳軍;楊廷貴;;含氮鐵錳合金阻尼性能和力學(xué)性能的研究[J];兵器材料科學(xué)與工程;2007年01期

9 楊霜,孫康,吳人潔;混雜纖維復(fù)合材料阻尼性能的研究[J];纖維復(fù)合材料;2002年01期

10 高鵬;齊笑冰;宋照偉;于波;;鐵基阻尼合金的研究現(xiàn)狀及展望[J];鑄造;2010年11期

相關(guān)會議論文 前10條

1 劉長瑛;陶小克;;C/ZnAl 22鋅基阻尼復(fù)合材料顯微組織研究[A];復(fù)合材料:生命、環(huán)境與高技術(shù)——第十二屆全國復(fù)合材料學(xué)術(shù)會議論文集[C];2002年

2 張平;丁毅;馬立群;劉廣;張振忠;沈曉東;;鎂合金的阻尼性能研究[A];第八屆全國內(nèi)耗與力學(xué)譜會議論文集[C];2006年

3 吳馳飛;李慧;張靚;黃劍峰;;動(dòng)態(tài)機(jī)械分析在小分子化合物阻尼性能及橡膠交聯(lián)過程的評價(jià)上的應(yīng)用[A];第四屆全國高聚物分子表征學(xué)術(shù)討論會論文集[C];2004年

4 謝東輝;傅祖明;蔡凱洪;;一種新型Mn-Ni阻尼合金的組織與阻尼性能研究[A];2011中國材料研討會論文摘要集[C];2011年

5 滕勁;李寧;宋順遠(yuǎn);文玉華;黃姝珂;;C對Fe-Mn阻尼合金組織及性能的影響[A];2011中國功能材料科技與產(chǎn)業(yè)高層論壇論文集(第一卷)[C];2011年

6 譚高銘;張之穎;;土木結(jié)構(gòu)的阻尼類型及常用阻尼模型綜述[A];第九屆全國振動(dòng)理論及應(yīng)用學(xué)術(shù)會議論文集[C];2007年

7 潘安霞;馬立群;張平;夏明六;程江輝;丁毅;;SiC_p/Mg-Zn-Zr復(fù)合材料的制備及其阻尼性能[A];第九屆全國固體內(nèi)耗與力學(xué)譜及其應(yīng)用學(xué)術(shù)會議論文集[C];2009年

8 潘啟英;吳錦榮;何顯儒;黃光速;;填料對CIIR/PEA共混物阻尼性能的影響研究[A];2005年全國高分子學(xué)術(shù)論文報(bào)告會論文摘要集[C];2005年

9 吳葉偉;吳昆;鄧?yán)だ?聶凱波;王曉軍;鄭明毅;胡小石;;Grp/AZ91復(fù)合材料的阻尼性能與力學(xué)性能[A];復(fù)合材料:創(chuàng)新與可持續(xù)發(fā)展(下冊)[C];2010年

10 任偉偉;李宏偉;;基于波速法的粘彈性材料高頻阻尼性能測試研究[A];2012船舶材料與工程應(yīng)用學(xué)術(shù)會議論文集[C];2012年

相關(guān)博士學(xué)位論文 前4條

1 倪楠楠;結(jié)構(gòu)阻尼樹脂基復(fù)合材料的結(jié)構(gòu)與性能研究[D];浙江大學(xué);2015年

2 劉先蘭;Mg-Zn-Nd-Cd-Zr合金的力學(xué)性能和阻尼性能研究[D];中南大學(xué);2012年

3 胡小石;熱處理和變形對鎂合金低頻阻尼性能的影響及機(jī)理研究[D];哈爾濱工業(yè)大學(xué);2007年

4 范國棟;純鎂和鎂合金的阻尼及微塑變行為研究[D];哈爾濱工業(yè)大學(xué);2013年

相關(guān)碩士學(xué)位論文 前10條

1 范浩;熱處理對Mn-Cu合金阻尼性能的影響及阻尼材料疊層結(jié)構(gòu)研究[D];西南交通大學(xué);2015年

2 唐建忠;復(fù)合間隙磁流變控制閥的優(yōu)化設(shè)計(jì)與性能分析[D];浙江大學(xué);2015年

3 史盼;粘彈性材料阻尼性能評估系統(tǒng)的設(shè)計(jì)及復(fù)合阻尼結(jié)構(gòu)阻尼特性的研究[D];南京大學(xué);2015年

4 龍超;Mg-Si系鎂合金強(qiáng)度與阻尼性能的平衡優(yōu)化[D];南昌航空大學(xué);2015年

5 查英英;晶體缺陷對金屬涂層阻尼性能影響的分子動(dòng)力學(xué)研究[D];東北大學(xué);2014年

6 黃林;熱處理及Fe含量對Mn-Cu合金阻尼性能的影響[D];西南交通大學(xué);2016年

7 凌闖;熱處理和變形對錳銅合金微觀組織和阻尼性能的影響[D];重慶大學(xué);2011年

8 趙亮;變形、熱處理和稀土Y對鎂合金力學(xué)和阻尼性能的影響[D];重慶大學(xué);2010年

9 黃勇;Fe-16Cr-2.5Mo合金阻尼性能的研究[D];四川大學(xué);2007年

10 孫豐翠;Mg-12Gd-3Y-0.5Zr合金力學(xué)及阻尼性能研究[D];南京理工大學(xué);2009年



本文編號:1444490

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/1444490.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶fe6e4***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com