重載并聯(lián)穩(wěn)定平臺(tái)構(gòu)型綜合與軌跡規(guī)劃研究
本文關(guān)鍵詞:重載并聯(lián)穩(wěn)定平臺(tái)構(gòu)型綜合與軌跡規(guī)劃研究 出處:《燕山大學(xué)》2015年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 并聯(lián)穩(wěn)定平臺(tái) 重載 力傳遞性 多輸入 非慣性系 躍度映射 軌跡規(guī)劃
【摘要】:火箭在海洋運(yùn)輸過程中,受到海浪擾動(dòng)的影響,會(huì)產(chǎn)生較大的傾斜和振動(dòng)。穩(wěn)定平臺(tái)可以隔離船體搖蕩對(duì)箭體的作用,保證箭體及箭載設(shè)備的運(yùn)輸安全。本文針對(duì)現(xiàn)有穩(wěn)定平臺(tái)產(chǎn)品載荷小,難以用于火箭運(yùn)輸?shù)膯栴}開展研究,主要內(nèi)容如下:對(duì)并聯(lián)機(jī)構(gòu)的力傳遞性和承載能力進(jìn)行了分析。給出并聯(lián)機(jī)構(gòu)力傳遞性的概念,定義了力傳遞性評(píng)價(jià)指標(biāo),提出一種計(jì)算標(biāo)準(zhǔn)化模型所能承受最大外力極值的方法。根據(jù)運(yùn)動(dòng)形式的不同,將并聯(lián)機(jī)構(gòu)的承載能力分為靜態(tài)承載能力和動(dòng)態(tài)承載能力,并給出計(jì)算方法。力傳遞性和承載能力相結(jié)合,可為重載并聯(lián)機(jī)構(gòu)的設(shè)計(jì)和評(píng)價(jià)提供指導(dǎo)。對(duì)適用于重載的并聯(lián)機(jī)構(gòu)多輸入驅(qū)動(dòng)方式進(jìn)行了研究。首先根據(jù)冗余驅(qū)動(dòng)力性質(zhì)和對(duì)動(dòng)平臺(tái)作用效果的不同,提出兩種冗余驅(qū)動(dòng)的分類方法;诓煌愋偷娜哂囹(qū)動(dòng),綜合出動(dòng)平臺(tái)靜載平衡伴隨冗余驅(qū)動(dòng)、關(guān)節(jié)靜載平衡伴隨冗余驅(qū)動(dòng)、重力平衡主動(dòng)冗余驅(qū)動(dòng)三種適用于重載的冗余驅(qū)動(dòng)方式。提出一種多輸入非冗余驅(qū)動(dòng)方式,綜合出多輸入非冗余驅(qū)動(dòng)單元和驅(qū)動(dòng)分支。以上述驅(qū)動(dòng)方式為基礎(chǔ)構(gòu)造了六種并聯(lián)機(jī)構(gòu),對(duì)于其中分支自由度大于6的3(2UPS-R)/PU機(jī)構(gòu)進(jìn)行了詳細(xì)分析;谛坷碚撻_展非慣性系下并聯(lián)機(jī)構(gòu)躍度的研究。定義了剛體的空間躍度、物體躍度和耦合物體躍度,并證明空間躍度和耦合物體躍度是旋量,而物體躍度不是旋量。推導(dǎo)出多剛體系統(tǒng)的躍度伴隨變換和伴隨映射表達(dá)式,得到了穩(wěn)定平臺(tái)系統(tǒng)各剛體間的躍度變換關(guān)系。建立了并聯(lián)機(jī)構(gòu)躍度映射模型,得到表征這種映射的三階影響系數(shù)矩陣。結(jié)合穩(wěn)定平臺(tái)系統(tǒng)剛體之間躍度變換和并聯(lián)機(jī)構(gòu)躍度映射,得到了非慣性系下并聯(lián)機(jī)構(gòu)的躍度映射模型。根據(jù)剛體角速度與歐拉角時(shí)間導(dǎo)數(shù)的關(guān)系,建立了剛體角躍度與歐拉角三階時(shí)間導(dǎo)數(shù)的映射。研究了非慣性系下穩(wěn)定平臺(tái)的軌跡規(guī)劃方法。利用準(zhǔn)均勻分布B樣條曲線的特點(diǎn),建立了動(dòng)平臺(tái)運(yùn)動(dòng)參數(shù)的線性約束,以動(dòng)平臺(tái)躍度與穩(wěn)定平臺(tái)主動(dòng)關(guān)節(jié)躍度的加權(quán)平方和最小為目標(biāo)求解樣條曲線的控制頂點(diǎn),進(jìn)而得到運(yùn)輸過程中動(dòng)平臺(tái)相對(duì)慣性系的運(yùn)動(dòng)規(guī)律。介紹了穩(wěn)定平臺(tái)地面試驗(yàn)系統(tǒng)的電氣和軟件控制系統(tǒng)。參與研制了地面試驗(yàn)系統(tǒng),在此基礎(chǔ)上開展實(shí)驗(yàn)研究,驗(yàn)證了增加配重可以有效的提高機(jī)構(gòu)的承載能力。將穩(wěn)定平臺(tái)動(dòng)平臺(tái)在慣性系中的等效運(yùn)動(dòng)在地面試驗(yàn)系統(tǒng)上實(shí)現(xiàn),驗(yàn)證了所得運(yùn)動(dòng)軌跡的可行性。
[Abstract]:In the process of ocean transportation, the rocket will be inclined and vibrated by the wave disturbance, and the stable platform can isolate the effect of the ship rocking on the arrow body. In order to ensure the transportation safety of arrows and arrow-borne equipment, this paper aims at the problem that the product of the existing stable platform has small load and is difficult to be used in rocket transportation. The main contents are as follows: the force transfer and bearing capacity of parallel mechanism are analyzed, the concept of force transfer of parallel mechanism is given, and the evaluation index of force transfer is defined. A method for calculating the maximum external force extremum of the standardized model is proposed. According to the different motion forms, the bearing capacity of the parallel mechanism is divided into static bearing capacity and dynamic bearing capacity. The calculation method, the combination of force transitivity and bearing capacity are also given. It can provide guidance for the design and evaluation of heavy-load parallel mechanism. The multi-input drive mode suitable for heavy load parallel mechanism is studied. Firstly, according to the nature of redundant driving force and the different effect on moving platform. Two kinds of redundant driving classification methods are proposed. Based on different types of redundant drivers, combined platform static load balance accompanied by redundant drive, joint static load balance accompanied with redundant drive. There are three redundant driving modes for heavy-duty gravity balancing active redundancy drive. A multi-input non-redundant drive mode is proposed. The multi-input non-redundant drive units and driving branches are synthesized and six kinds of parallel mechanisms are constructed based on the above driving modes. Based on spinor theory, the jump degree of parallel mechanism under non-inertial frame is studied in detail. The spatial hopping of rigid body is defined. It is proved that the spatial hops and coupled hops are spinor, but the hops are not spinor. The expressions of the adjoint transformation and adjoint mapping for multi-rigid body systems are derived. The hops transformation relationship among the rigid bodies of the stable platform system is obtained, and the jump mapping model of the parallel mechanism is established. The third-order influence coefficient matrix representing this mapping is obtained, which combines the hop transformation between rigid bodies of stable platform system and the hop mapping of parallel mechanism. Based on the relationship between angular velocity of rigid body and time derivative of Euler angle, the jump mapping model of parallel mechanism under non-inertial system is obtained. The mapping between angular hops of rigid body and the third order time derivative of Euler angle is established. The trajectory planning method of stable platform under non-inertial frame is studied. The characteristic of quasi-uniform distribution B-spline curve is used. The linear constraint of the moving platform motion parameters is established, and the control points of the spline curve are solved with the minimum of the weighted square sum of the moving platform jump and the stable platform active joint jump. Then the motion law of the moving platform relative to the inertial system is obtained. The electrical and software control system of the ground test system of the stabilized platform is introduced and the ground test system is developed. On this basis, the experimental research is carried out, which proves that increasing the counterweight can effectively improve the bearing capacity of the mechanism. The equivalent motion of the stable platform in the inertial system is realized on the ground test system. The feasibility of the motion trajectory is verified.
【學(xué)位授予單位】:燕山大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB535;V553.19
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李學(xué)忠;黃守訓(xùn);林其生;胡珂;羅學(xué)惠;;船用搖擺試驗(yàn)臺(tái)建模和控制系統(tǒng)設(shè)計(jì)[J];電氣傳動(dòng);2006年11期
2 趙永生,任敬軼,黃真;多機(jī)械手協(xié)同的無內(nèi)力抓取及動(dòng)載的分配[J];光學(xué)精密工程;1999年02期
3 萬磊;崔士鵬;張國成;曹建;;欠驅(qū)動(dòng)水下機(jī)器人航跡跟蹤控制[J];電機(jī)與控制學(xué)報(bào);2013年02期
4 周曉堯;張智永;范大鵬;;臺(tái)速度估計(jì)(英文)[J];Chinese Journal of Aeronautics;2011年05期
5 高建設(shè);劉德平;楊杰偉;趙永生;;一種新型并聯(lián)機(jī)床的驅(qū)動(dòng)輸入選擇[J];機(jī)器人;2009年06期
6 曲云霞;李為民;高瑞廷;范順成;;基于性能圖譜的2自由度RR&PRR解耦球面并聯(lián)機(jī)構(gòu)承載能力研究[J];機(jī)械設(shè)計(jì);2012年06期
7 李剛;劉德時(shí);;鍛壓操作機(jī)大范圍順應(yīng)運(yùn)動(dòng)的動(dòng)力學(xué)行為分析[J];機(jī)械工程學(xué)報(bào);2010年11期
8 孫衛(wèi)東;王皓;趙勇;;一種冗余驅(qū)動(dòng)協(xié)調(diào)機(jī)構(gòu)的偏載穩(wěn)定性分析[J];機(jī)械工程學(xué)報(bào);2012年01期
9 羅中寶;楊志東;叢大成;張輝;郭佳;;2自由度驅(qū)動(dòng)冗余搖擺臺(tái)的設(shè)計(jì)[J];機(jī)器人;2012年05期
10 Xue-Mei Niu;Guo-Qin Gao;Xin-Jun Liu;Zhi-Da Bao;;Dynamics and Control of a Novel 3-DOF Parallel Manipulator with Actuation Redundancy[J];International Journal of Automation and Computing;2013年06期
相關(guān)博士學(xué)位論文 前3條
1 程佳;并聯(lián)4TPS-1PS型電動(dòng)穩(wěn)定跟蹤平臺(tái)的特性及控制研究[D];浙江大學(xué);2008年
2 許允斗;基于并聯(lián)機(jī)構(gòu)理論大型鍛造操作機(jī)設(shè)計(jì)與分析[D];燕山大學(xué);2012年
3 劉曉;并聯(lián)6-PUS艦載穩(wěn)定平臺(tái)機(jī)構(gòu)學(xué)基礎(chǔ)理論與實(shí)驗(yàn)研究[D];燕山大學(xué);2014年
相關(guān)碩士學(xué)位論文 前3條
1 鄭仁成;5-UPS/PRPU并聯(lián)機(jī)床的冗余驅(qū)動(dòng)研究[D];燕山大學(xué);2006年
2 韓龍;鍛造操作機(jī)構(gòu)型及耦合分析[D];中南大學(xué);2012年
3 朱海燕;七自由度仿人機(jī)械臂軌跡規(guī)劃與控制方法研究[D];浙江工業(yè)大學(xué);2012年
,本文編號(hào):1361613
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/1361613.html