懸吊式宇航員低重力模擬系統(tǒng)動(dòng)力學(xué)建模及控制分析
發(fā)布時(shí)間:2017-12-26 16:26
本文關(guān)鍵詞:懸吊式宇航員低重力模擬系統(tǒng)動(dòng)力學(xué)建模及控制分析 出處:《哈爾濱工業(yè)大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 宇航員訓(xùn)練 低重力模擬 懸吊法 單吊索重力補(bǔ)償模型 隨動(dòng)控制
【摘要】:宇航員的地面訓(xùn)練是載人航天任務(wù)實(shí)施的重要準(zhǔn)備。以阿波羅探月任務(wù)為標(biāo)志,任務(wù)中要求宇航員在特殊的太空環(huán)境下:移動(dòng)軌跡愈加精確;活動(dòng)范圍愈加寬廣;操作技巧愈加高超。在此背景下,在地面模擬太空的低重力環(huán)境,訓(xùn)練宇航員艙外活動(dòng)技能愈發(fā)重要。中、美、俄和歐盟等航天強(qiáng)國(guó)在地面低重力模擬方面的進(jìn)行了大量研究,其中對(duì)于宇航員艙外活動(dòng)的低重力模擬主要依靠水浮和失重飛行等被動(dòng)方法,宇航員訓(xùn)練時(shí)間和運(yùn)動(dòng)速度受到限制,不足以滿足未來(lái)任務(wù)的需求。隨著電機(jī)、傳感器及控制技術(shù)的進(jìn)步,在宇航員艙外活動(dòng)訓(xùn)練中運(yùn)用懸吊法主動(dòng)的跟蹤宇航員運(yùn)動(dòng),提供高精度重力補(bǔ)償?shù)南到y(tǒng)實(shí)現(xiàn)成為可能。首先,本文對(duì)宇航員多剛體鏈?zhǔn)侥P徒⒘酥亓ρa(bǔ)償模型,得到了完整的補(bǔ)償力約束條件。在補(bǔ)償力約束條件下,限定補(bǔ)償力數(shù)目、作用點(diǎn)和方向,得到了一組單吊索重力補(bǔ)償模型的解。對(duì)應(yīng)的提出宇航員運(yùn)動(dòng)中單吊索重力補(bǔ)償?shù)膶?shí)現(xiàn)原理。分析宇航員訓(xùn)練中的運(yùn)動(dòng)狀態(tài),完成懸吊式宇航員低重力模擬系統(tǒng)方案設(shè)計(jì),確定單吊索重力補(bǔ)償可以高保真實(shí)現(xiàn)宇航員行走,奔跑以及空間機(jī)動(dòng)的低重力模擬訓(xùn)練。其次,根據(jù)宇航員運(yùn)動(dòng)的兩種狀態(tài),分別建立了對(duì)應(yīng)的宇航員-隨動(dòng)懸吊系統(tǒng)的動(dòng)力學(xué)模型。面向隨動(dòng)控制方法研究,統(tǒng)一了隨動(dòng)系統(tǒng)的動(dòng)力學(xué)模型和控制目標(biāo)。并通過數(shù)字仿真對(duì)建立的模型完成了動(dòng)力學(xué)特性分析和驗(yàn)證,發(fā)現(xiàn)宇航員-隨動(dòng)懸吊系統(tǒng)存在未知擾動(dòng)、耦合和非線性的動(dòng)力學(xué)特性。最后,依據(jù)建立的的動(dòng)力學(xué)模型,運(yùn)用部分反饋線性化方法設(shè)計(jì)了穩(wěn)定的非線性隨動(dòng)控制器。在ADAMS中搭建設(shè)計(jì)的模擬系統(tǒng),在MATLAB中建立隨動(dòng)控制器,聯(lián)合兩者得到仿真實(shí)驗(yàn)平臺(tái),進(jìn)行宇航員運(yùn)動(dòng)中的軀干質(zhì)心跟蹤實(shí)驗(yàn),分析控制器的性能,證明了系統(tǒng)設(shè)計(jì)的正確性。
[Abstract]:The astronauts' ground training is an important preparation for the implementation of the manned space mission. Marked by Apollo's mission to the moon, astronauts are required to have more precise mobile trajectories, wider range of activities and more excellent operation skills in special space environment. In this context, the training of astronauts' skills in extravehicular activity is becoming more and more important in the ground simulation of the low gravity environment in space. In the United States, Russia and the European Union and other space powers in low gravity ground simulation is studied, including low gravity for extravehicular activity mainly depends on the water and simulated weightlessness flight passive method, astronaut training time and movement speed is limited, inadequate to meet future tasks. With the progress of motor, sensor and control technology, it is possible to carry out the active tracking of astronaut motion in the astronaut extravehicular activity training and provide the high-precision gravity compensation system. First, the gravity compensation model is established for the multi rigid body chain model of astronauts, and a complete compensation constraint condition is obtained. Under the constraint of compensation force, the solution of a set of gravity compensation model for single sling is obtained by limiting the number of compensation force, the point of action and the direction. The corresponding principle of the realization of the gravity compensation of single sling in the astronaut movement is proposed. The motion state of astronaut training is analyzed, and the design of suspended astronaut low gravity simulation system is completed. The gravity compensation of single sling can ensure high fidelity to achieve astronaut walking, running and low gravity simulation training of space maneuver. Secondly, according to the two states of the astronaut movement, the corresponding dynamic model of the astronaut - servo suspension system is set up respectively. For the study of the servo control method, the dynamic model and the control target of the servo system are unified. The dynamic characteristics of the model are analyzed and verified by digital simulation. It is found that there are unknown disturbances, coupling and nonlinear dynamic characteristics of the astronaut servo suspension system. Finally, based on the established dynamic model, a stable nonlinear servo controller is designed by using the partial feedback linearization method. A simulation system is built in ADAMS, and a servo controller is set up in MATLAB. A simulation experiment platform is combined to carry out the tracking experiment of the trunk mass in the astronaut motion, and the performance of the controller is analyzed, which proves the correctness of the system design.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:V416.8;V527
【參考文獻(xiàn)】
相關(guān)碩士學(xué)位論文 前1條
1 孫小雷;月球車地面六分之一重力試驗(yàn)系統(tǒng)的位姿確定方法研究[D];哈爾濱工業(yè)大學(xué);2010年
,本文編號(hào):1337989
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/1337989.html
最近更新
教材專著