緊湊型換熱器內(nèi)流動與換熱特性的數(shù)值模擬與優(yōu)化研究
發(fā)布時間:2021-07-22 07:42
緊湊型換熱器較傳統(tǒng)換熱器具有相對較大的換熱面積和體積比,不僅能夠大幅減少換熱器尺寸、質(zhì)量從而降低制造成本,還具有更高的換熱效率。緊湊型換熱器包括管翅式和板翅式兩種。在緊湊換熱器內(nèi),氣體流動側(cè)較低的換熱系數(shù)往往限制換熱器的整體換熱性能,因而尋求新方法來改善氣側(cè)換熱性能是十分重要的。基于上述目的,一種與一次表面相連的二次擴展表面如肋片或渦發(fā)生器等形式被設(shè)計提出,擴展表面能夠提高換熱面積并通過擾亂流場來強化近壁和核心流區(qū)域的換熱。由于涉及參數(shù)數(shù)目繁多,考慮全局所有參數(shù)的緊湊型換熱器設(shè)計十分復(fù)雜,而且緊湊型換熱器的優(yōu)化常常涉及啟發(fā)式計算方法。在本文的第一部分,一種多目標(biāo)優(yōu)化的方法被提出來,這種方法基于并結(jié)合差分進化算法、遺傳算法和自適應(yīng)模擬退火算法(復(fù)合DE-GA-ASA算法)。這種復(fù)合DE-GA-ASA算法旨在通過結(jié)合三種基礎(chǔ)算法的長處提高算法整體的健壯性。采用基準問題來檢驗這種算法的性能,而后將其成功應(yīng)用到鋸齒型板翅式換熱器的優(yōu)化設(shè)計中。研究結(jié)果表明這種復(fù)合DE-GA-ASA算法能夠有效實現(xiàn)板翅式換熱器的優(yōu)化設(shè)計。此外,還探究了板翅式換熱器中各參數(shù)對于優(yōu)化設(shè)計的影響。研究中考慮的板翅式換熱...
【文章來源】:浙江大學(xué)浙江省 211工程院校 985工程院校 教育部直屬院校
【文章頁數(shù)】:133 頁
【學(xué)位級別】:博士
【文章目錄】:
Abstract
摘要
Nomenclature
1. Introduction
1.1. Heat transfer enhancement techniques
1.2. Review on simulation and optimization of compact heat exchangers
1.2.1. Optimization of plate-fin heat exchanger
1.2.2. Combining numerical simulation and optimization
1.3. Motivations and objectives
1.4. Overview and outline
2. Numerical and optimization methods
2.1. Multi-objective optimization method
2.1.1 Optimization algorithms
2.1.2. Combined DE-GA-ASA
2.2. Numerical method
2.2.1. Components of numerical solution method
2.2.2 Finite Volume (FV) method
2.2.3 Numerical modeling of Turbulence
2.3. Combining numerical simulation and optimization method
2.3.1. Design variables and objective functions
2.3.2. Artificial neural network (ANN)
2.3.3. Combining CFD, ANN and MOA
2.4. Decision making criteria
3. Optimal design of plate-fin heat exchanger
3.1. Mathematical modeling
3.1.1. Thermal modeling
3.1.2. Economic modeling
3.2. Design of plate-fin heat exchanger by combined DE-GA-ASA algorithm
3.3. Validation
3.4. Case study
3.4.1. Objective functions, design parameters and constraints
3.5. Resulsts and discussions
3.5.1. Optimal parameters investiagation
3.5.2. Optimum parameters
3.5.3. Selection of final optimum solution
3.6. Summary
4. Optimal configuration of vortex generator in a plate-fin channel
4.1. Model description
4.1.1. Physical model
4.1.2. Numerical model and boundary conditions
4.2. Parameters definition and mesh sensitivity
4.3. Results and discussions
4.3.1. Numerical validation
4.3.2. Flow structure and heat transfer analysis
4.3.3. Flow loss analysis
4.3.4. Optimization results
4.4. Summary
5. Numerical study and optimization of attack angle of vortex generator andcorrugation height in wavy fin-and-tube heat exchanger
5.1. Model description
5.1.1. Physical model
5.1.2. Governing equations and boundary conditions
5.2. Parameters definition
5.3. Mesh independence and validation model
5.4. Results and discussions
5.4.1. Flow pattern and temperature contours
5.4.2. Heat transfer and fluid flow performance
5.4.3. Optimization results
5.5. Summary
6. Experimental and numerical study on louvered fin and flat tube heat exchangers
6.1. Experimental test facility
6.1.1. Test heat exchangers
6.1.2. Test conditions
6.2. Experimental results and discussions
6.3. Numerical analysis
6.3.1. Governing equations and boundary condtitions
6.3.2. Numerical method
6.3.3. Performance parameters
6.3.4. Numerical results and discussions
6.4. Summary
7. Conclusions and suggestions
7.1. Conclusions
7.2. Suggestions
References
Appendix A. Pseudo codes for DE, GA and ASA
Appendix B. Weights and biases (plate-fin channel)
Appendix C. Weigts and biases (Wavy finned-tube exchanger)
Acknowledgement
Curriculum vitae
【參考文獻】:
期刊論文
[1]Improved NSGA-Ⅱ Multi-objective Genetic Algorithm Based on Hybridization-encouraged Mechanism[J]. Sun Yijie*,Shen Gongzhang School of Automation Science and Electrical Engineering,Beijing University of Aeronautics and Astronautics,Beijing 100191,China. Chinese Journal of Aeronautics. 2008(06)
本文編號:3296739
【文章來源】:浙江大學(xué)浙江省 211工程院校 985工程院校 教育部直屬院校
【文章頁數(shù)】:133 頁
【學(xué)位級別】:博士
【文章目錄】:
Abstract
摘要
Nomenclature
1. Introduction
1.1. Heat transfer enhancement techniques
1.2. Review on simulation and optimization of compact heat exchangers
1.2.1. Optimization of plate-fin heat exchanger
1.2.2. Combining numerical simulation and optimization
1.3. Motivations and objectives
1.4. Overview and outline
2. Numerical and optimization methods
2.1. Multi-objective optimization method
2.1.1 Optimization algorithms
2.1.2. Combined DE-GA-ASA
2.2. Numerical method
2.2.1. Components of numerical solution method
2.2.2 Finite Volume (FV) method
2.2.3 Numerical modeling of Turbulence
2.3. Combining numerical simulation and optimization method
2.3.1. Design variables and objective functions
2.3.2. Artificial neural network (ANN)
2.3.3. Combining CFD, ANN and MOA
2.4. Decision making criteria
3. Optimal design of plate-fin heat exchanger
3.1. Mathematical modeling
3.1.1. Thermal modeling
3.1.2. Economic modeling
3.2. Design of plate-fin heat exchanger by combined DE-GA-ASA algorithm
3.3. Validation
3.4. Case study
3.4.1. Objective functions, design parameters and constraints
3.5. Resulsts and discussions
3.5.1. Optimal parameters investiagation
3.5.2. Optimum parameters
3.5.3. Selection of final optimum solution
3.6. Summary
4. Optimal configuration of vortex generator in a plate-fin channel
4.1. Model description
4.1.1. Physical model
4.1.2. Numerical model and boundary conditions
4.2. Parameters definition and mesh sensitivity
4.3. Results and discussions
4.3.1. Numerical validation
4.3.2. Flow structure and heat transfer analysis
4.3.3. Flow loss analysis
4.3.4. Optimization results
4.4. Summary
5. Numerical study and optimization of attack angle of vortex generator andcorrugation height in wavy fin-and-tube heat exchanger
5.1. Model description
5.1.1. Physical model
5.1.2. Governing equations and boundary conditions
5.2. Parameters definition
5.3. Mesh independence and validation model
5.4. Results and discussions
5.4.1. Flow pattern and temperature contours
5.4.2. Heat transfer and fluid flow performance
5.4.3. Optimization results
5.5. Summary
6. Experimental and numerical study on louvered fin and flat tube heat exchangers
6.1. Experimental test facility
6.1.1. Test heat exchangers
6.1.2. Test conditions
6.2. Experimental results and discussions
6.3. Numerical analysis
6.3.1. Governing equations and boundary condtitions
6.3.2. Numerical method
6.3.3. Performance parameters
6.3.4. Numerical results and discussions
6.4. Summary
7. Conclusions and suggestions
7.1. Conclusions
7.2. Suggestions
References
Appendix A. Pseudo codes for DE, GA and ASA
Appendix B. Weights and biases (plate-fin channel)
Appendix C. Weigts and biases (Wavy finned-tube exchanger)
Acknowledgement
Curriculum vitae
【參考文獻】:
期刊論文
[1]Improved NSGA-Ⅱ Multi-objective Genetic Algorithm Based on Hybridization-encouraged Mechanism[J]. Sun Yijie*,Shen Gongzhang School of Automation Science and Electrical Engineering,Beijing University of Aeronautics and Astronautics,Beijing 100191,China. Chinese Journal of Aeronautics. 2008(06)
本文編號:3296739
本文鏈接:http://sikaile.net/kejilunwen/dongligc/3296739.html
最近更新
教材專著