高壓共軌柴油機(jī)軌壓控制策略研究
本文選題:高壓共軌 + 柴油機(jī) ; 參考:《吉林大學(xué)》2015年碩士論文
【摘要】:隨著節(jié)能環(huán)保要求日益嚴(yán)格,高壓共軌系統(tǒng)得到越來(lái)越多的應(yīng)用。軌壓控制策略是實(shí)現(xiàn)高壓共軌系統(tǒng)燃油噴射系統(tǒng)噴射壓力高、噴射次數(shù)多的前提。軌壓控制要求穩(wěn)態(tài)波動(dòng)小,瞬態(tài)響應(yīng)快,滿(mǎn)足高壓共軌柴油機(jī)起動(dòng)、怠速、正常、加減速等穩(wěn)態(tài)及非穩(wěn)態(tài)工況下的需求。 本文在實(shí)驗(yàn)室前期大量仿真、試驗(yàn)、分析的的基礎(chǔ)上,使用一款基于MC9S12XEP100單片機(jī)的開(kāi)放式電控單元進(jìn)行高壓共軌電控燃油噴射系統(tǒng)開(kāi)發(fā),作為完整柴油機(jī)電控系統(tǒng)的一部分。本文主要工作包括: 1.深入研究博世第二代共軌系統(tǒng)共軌、噴油器、高壓泵等關(guān)鍵部件的工作原理,并基于此使用AMESim建立其一維仿真模型。利用詳細(xì)子模型對(duì)噴油器噴油、噴油器回油、高壓泵柱塞泄露等特性進(jìn)行分析,為軌壓控制策略建立提供依據(jù)。進(jìn)行模型簡(jiǎn)化,提高模型運(yùn)算速度。 2.使用MATLAB/Simulink/Stateflow建立高壓共軌柴油機(jī)燃油噴射系統(tǒng)軌壓控制策略模型,包括開(kāi)閉環(huán)切換模塊、目標(biāo)軌壓計(jì)算、前饋流量計(jì)算、PID反饋流量計(jì)算、流量轉(zhuǎn)占空比模塊等。進(jìn)行聯(lián)合離線(xiàn)仿真,確定前饋加反饋的軌壓控制結(jié)構(gòu)。 3.使用CodeWarrior集成開(kāi)發(fā)環(huán)境完善軌壓控制的信號(hào)采集處理、任務(wù)調(diào)度、輸出驅(qū)動(dòng)等,,使所設(shè)計(jì)的軌壓控制策略能夠在電控單元整體框架下正常工作。 4.建立由變頻器、調(diào)速電機(jī)驅(qū)動(dòng)的高壓共軌燃油噴射系統(tǒng)泵臺(tái)試驗(yàn)臺(tái)架,進(jìn)行一部分穩(wěn)態(tài)及非穩(wěn)態(tài)工況試驗(yàn),驗(yàn)證了所設(shè)計(jì)的軌壓控制策略的可行性,并對(duì)控制周期、控制步長(zhǎng)、前饋控制、PID參數(shù)、PT濾波時(shí)間常數(shù)等進(jìn)行初步的標(biāo)定。最終在完整的高壓共軌柴油機(jī)發(fā)動(dòng)機(jī)臺(tái)架上進(jìn)行起動(dòng)等復(fù)雜工況試驗(yàn),對(duì)開(kāi)環(huán)控制做進(jìn)一步的標(biāo)定。 結(jié)果表明:在所研究的范圍內(nèi),噴油器工作過(guò)程中產(chǎn)生的回油量與噴射脈寬和目標(biāo)軌壓正相關(guān),增長(zhǎng)基本成一條直線(xiàn);噴油器噴油和回油量二者增長(zhǎng)規(guī)律相似,二者合并可以作為一個(gè)前饋脈譜,也可以用一個(gè)公式計(jì)算;高壓泵柱塞泄漏與目標(biāo)軌壓和溫度正相關(guān),可以作為另一個(gè)前饋脈譜,也可以擬合出一個(gè)公式進(jìn)行計(jì)算;經(jīng)過(guò)仔細(xì)標(biāo)定的帶有開(kāi)閉環(huán)切換的基于前饋加反饋控制結(jié)構(gòu)的軌壓控制策略能夠起到良好的控制效果,起動(dòng)工況,起動(dòng)開(kāi)始0.92s之后,軌壓就能從0MPa增大到40MPa;急加速及急減速工況,軌壓能夠在1.6s內(nèi)快速變化30MPa;穩(wěn)態(tài)工況,軌壓最大波動(dòng)在±3MPa范圍內(nèi);滿(mǎn)足高壓共軌柴油機(jī)起動(dòng)、正常、加減速等各個(gè)工況下的需求。
[Abstract]:With the increasingly stringent requirements of energy saving and environmental protection, high-voltage common rail system has been applied more and more. The control strategy of rail pressure is the premise of high injection pressure and multiple injection times of fuel injection system in high pressure common rail system. Rail pressure control requires small steady state fluctuation and fast transient response to meet the needs of high pressure common-rail diesel engine under steady and unsteady conditions such as starting idling speed normal acceleration and deceleration. On the basis of a lot of simulation, experiment and analysis in the early stage of the laboratory, an open electronic control unit based on MC9S12XEP100 single chip microcomputer is used to develop the high pressure common rail electronic fuel injection system, which is a part of the complete electronic control system of diesel engine. The main work of this paper is as follows: 1. The working principle of the common rail, injector, high pressure pump and other key components of Bosch's second generation common rail system is deeply studied, and based on this, the one-dimensional simulation model is established by using AMESim. The detailed sub-model is used to analyze the characteristics of injector, injector return and leakage of high pressure pump plunger, which provides the basis for the establishment of rail pressure control strategy. Using MATLAB / Simulink / Stateflow to establish the rail pressure control strategy model of high pressure common-rail diesel engine fuel injection system, including open closed loop switching module, target rail pressure calculation, Feedforward flow calculation pid feedback flow calculation, flow duty cycle module and so on. Combined off-line simulation to determine the feedforward and feedback rail pressure control structure. 3. Using CodeWarrior integrated development environment to improve rail pressure control signal collection and processing, task scheduling, output drive, etc. The designed rail pressure control strategy can work normally under the whole frame of the electronic control unit. 4. The pump bench of high voltage common rail fuel injection system driven by frequency converter and speed regulating motor is established. The feasibility of the designed rail pressure control strategy is verified by a part of steady and unsteady state tests, and the control cycle, control step size, feed forward control pid parameter and PT filter time constant are preliminarily calibrated. Finally, the open loop control is further calibrated on the complete engine bench of high pressure common rail diesel engine under complex operating conditions such as starting test. The results show that the fuel return produced by the injector is positively correlated with the injection pulse width and the target rail pressure, and the increase is basically a straight line, and the growth law of the injector oil injection and fuel return is similar. The combination of the two can be used as either a feedforward pulse spectrum or a formula, and the leakage of the plunger of the high pressure pump is positively correlated with the target rail pressure and temperature, and can be used as another feedforward pulse spectrum or can be calculated by fitting a formula. The rail pressure control strategy based on feedforward and feedback control structure, which is calibrated carefully with open and closed loop switching, can play a good control effect. The rail pressure can be increased from 0 MPA to 40 MPA after starting operation for 0.92s. In the rapid acceleration and deceleration conditions, the rail pressure can rapidly change 30 MPa in 1.6 s, and the maximum fluctuation of rail pressure in the steady condition is 鹵3 MPA, which can meet the requirements of the high pressure common rail diesel engine under the starting, normal, acceleration and deceleration conditions.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TK423
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 楊林,冒曉建,卓斌;車(chē)用柴油機(jī)高壓共軌燃油噴射壓力控制技術(shù)[J];車(chē)用發(fā)動(dòng)機(jī);2001年05期
2 唐永良,肖文雍,楊林,卓斌;Gd-1高壓共軌式柴油機(jī)共軌油壓控制的試驗(yàn)研究[J];柴油機(jī);2004年06期
3 冒曉建,郭海濤,常久鵬,虞金霞,楊林,卓斌;車(chē)用柴油機(jī)共軌燃料噴射系統(tǒng)的設(shè)計(jì)[J];內(nèi)燃機(jī)工程;2002年03期
4 王洪榮;張幽彤;王軍;熊慶輝;丁小亮;;基于MPC555的高壓共軌柴油機(jī)控制策略及匹配研究[J];內(nèi)燃機(jī)工程;2008年05期
5 冒曉建,肖文雍,常久鵬,楊林,卓斌;GD-1車(chē)用電控柴油機(jī)高壓共軌系統(tǒng)硬件的開(kāi)發(fā)[J];內(nèi)燃機(jī)學(xué)報(bào);2002年05期
6 肖文雍,冒曉建,王好戰(zhàn),譚文春,楊林,卓斌;GD-1高壓共軌式電控柴油機(jī)的起動(dòng)控制策略研究[J];內(nèi)燃機(jī)學(xué)報(bào);2003年02期
7 韋雄;冒曉建;肖文雍;祝軻卿;卓斌;;高壓共軌多次噴射系統(tǒng)油泵單元控制策略[J];農(nóng)業(yè)工程學(xué)報(bào);2010年12期
8 王洪榮;張幽彤;熊慶輝;李建純;李鐵拴;;共軌柴油機(jī)啟動(dòng)控制研究[J];汽車(chē)工程;2007年08期
9 王軍;張幽彤;仇滔;王洪榮;;柴油機(jī)高壓共軌壓力控制的動(dòng)態(tài)仿真與分析[J];系統(tǒng)仿真學(xué)報(bào);2009年09期
相關(guān)博士學(xué)位論文 前4條
1 張建銳;重型柴油機(jī)SCR尿素噴射控制策略研究[D];吉林大學(xué);2011年
2 裴海靈;高壓共軌噴油控制策略及共軌管優(yōu)化設(shè)計(jì)研究[D];中南大學(xué);2009年
3 田維;高速直噴柴油機(jī)混合氣形成動(dòng)態(tài)特性及其對(duì)燃燒過(guò)程的影響[D];吉林大學(xué);2010年
4 袁榮棣;基于模型的壓縮天然氣發(fā)動(dòng)機(jī)電控關(guān)鍵技術(shù)研究[D];重慶大學(xué);2012年
本文編號(hào):2058147
本文鏈接:http://sikaile.net/kejilunwen/dongligc/2058147.html