超聲速燃燒中可壓縮湍流燃燒模型研究
本文選題:超聲速燃燒沖壓發(fā)動機 + 大渦模擬; 參考:《中國科學技術(shù)大學》2015年博士論文
【摘要】:超聲速燃燒沖壓發(fā)動機因為能夠?qū)崿F(xiàn)高超聲速飛行(5Ma15)成為近年來的研究熱點。由于超聲速燃燒實驗測量手段復雜、實驗設備昂貴,計算流體力學方法成為研究超聲速燃燒沖壓發(fā)動機的重要手段。超燃沖壓發(fā)動機燃燒室內(nèi)存在復雜的激波/邊界層、激波/火焰的相互作用以及自點火、局部熄火、再點燃、火焰駐定等非定常的燃燒過程,發(fā)展超聲速燃燒模型和數(shù)值方法對研究超燃沖壓發(fā)動機內(nèi)的流動和燃燒特征非常重要。本文主要開展以下幾個方面的研究: (1)發(fā)展基于化學熱力學建表的可壓縮湍流燃燒模型;(2)基于發(fā)展的可壓縮火焰面進度變量方法對超聲速支板射流DLR燃燒室的燃燒特征分別開展RANS和LES數(shù)值研究;(3)采用LES方法結(jié)合可壓縮修正的自點火燃燒模型分別研究高焓值超聲速橫側(cè)射流Gamba燃燒室的混合特性和燃燒特性。超聲速流場中的可壓縮效應如壓縮/膨脹過程產(chǎn)生的壓力、密度和溫度的變化,對化學反應過程產(chǎn)生重要影響。因此,將低馬赫數(shù)下的化學熱力學建表方法應用到超聲速可壓縮流時需要考慮高速流體的可壓縮性。本文對化學熱力學建表模型的可壓縮修正方法進行了深入研究。本文引入了溫度和壓力修正方法。在可壓縮化學熱力學建表方法中,通過直接求解能量方程得到溫度值,可以耦合部分可壓縮性影響;通過分析不同壓力下層流化學熱力學數(shù)據(jù)表,給出反應進度變量源項的壓力修正系數(shù),對反應進度變量源項進行壓力修正。此方法的優(yōu)點是能夠在不增加化學熱力學數(shù)據(jù)表的大小的基礎上考慮流場的壓力變化,并可以推廣應用到采用反應進度變量建表的模型中;超聲速橫側(cè)射流燃燒算例中,在以上溫度與壓力修正的基礎上,提出了修正自點火模型中初始溫度的方法,考慮燃料射流近場由于壓縮/膨脹引起溫度的不均勻分布。采用可壓縮火焰面進度變量方法對超聲速支板射流DLR燃燒室三維流場和燃燒場開展RANS和LES數(shù)值研究。相比與RANS方法,LES方法得到的冷態(tài)場中壓力分布、波系分布、速度分布以及燃燒場中波系分布、速度分布、溫度分布結(jié)果均與實驗值符合更好。LES方法可以預測超聲速中的大尺度湍流擬序結(jié)構(gòu)以及非定常的流動及燃燒過程,能夠捕捉激波與邊界層的相互作用、湍流混合、火焰駐定以及熄火再燃等問題;LES結(jié)果表明,鈍體兩側(cè)剪切層內(nèi)形成了熄火再燃的不穩(wěn)定火焰,在燃燒室中心回流泡內(nèi)形成了穩(wěn)定的富燃部分預混火焰;在LES框架下,分別采用的ε與β兩種概率密度分布對反應進度封閉。對比結(jié)果發(fā)現(xiàn),假定概率密度的β分布計算結(jié)果與實驗符合較好,假定概率密度的δ分布沒有考慮反應進度變量的亞格子脈動,得到平均溫度偏高。因此,反應進度變量的亞格子脈動對預測超聲速燃燒非常重要。采用LES方法研究了超聲速橫側(cè)射流Gamba燃燒室內(nèi)的大尺度序結(jié)構(gòu)和混合特性。采用混合分數(shù)概率密度函數(shù)分析燃料射流噴口上游回流區(qū)、射流近場以及射流遠場的混合特征,并探討射流動量通量比對流場結(jié)構(gòu)、射流穿透深度、標量分布以及混合效率的影響。結(jié)果表明,低射流動量通量比時,反向旋轉(zhuǎn)渦對CVP結(jié)構(gòu)與壁面邊界層相互作用更強烈,燃料的質(zhì)量分數(shù)沿著橫向方向擴散的更快,混合效率更高?紤]到超聲速來流溫度高于燃料的自點火溫度,采用修正的自點火燃燒模型研究了Gamba燃燒室燃燒場內(nèi)的流場結(jié)構(gòu)、射流穿透深度、渦結(jié)構(gòu)以及燃燒特征。由于反應放熱,燃燒場中,反向旋轉(zhuǎn)渦對CVP與尾跡反向旋轉(zhuǎn)渦對TCVP結(jié)構(gòu)變大、射流穿透深度提高。計算得到燃燒場三個燃燒反應區(qū)域:射流入口上游的點火點、射流剪切層以及近壁面射流尾跡區(qū)。近壁面射流尾跡區(qū)火焰穩(wěn)定主要由尾跡反向旋轉(zhuǎn)渦對TCVP結(jié)構(gòu)控制。
[Abstract]:Supersonic combustion ramjet has become a hot spot in recent years because of its ability to achieve hypersonic flight (5Ma15). Due to the complexity of the experimental measurement methods and the expensive experimental equipment, computational fluid dynamics (CFD) has become an important part of the study of the supersonic combustion ramjet engine. Shock / boundary layer, shock / flame interaction, self ignition, local extinguishing, rekindling, flame stationing and other unsteady combustion processes, developing supersonic combustion model and numerical method are very important to study the flow and combustion characteristics in the scramjet. This paper is to carry out the following aspects: (1) development basis The compressible turbulent combustion model was built by chemical thermodynamics; (2) RANS and LES numerical studies were carried out on the combustion characteristics of the supersonic jet DLR combustor based on the developed compressible flame surface progress variable method. (3) the high enthalpy supersonic lateral side was studied by the LES method and the self point fire combustion model combined with the compressible modified self point fire model respectively. The mixing and combustion characteristics of the jet Gamba combustor. The compressibility effect in the supersonic flow field, such as the pressure, density and temperature change produced by the compression / expansion process, has an important influence on the chemical reaction process. Therefore, the application of the chemical thermodynamics method under the low Maher number to the supersonic compressible flow needs to be considered at high speed. The compressibility of fluid is studied in this paper. In this paper, the compressible correction method of the chemical thermodynamics model is deeply studied. In this paper, the temperature and pressure correction method is introduced. In the compressing chemical thermodynamics table method, the temperature value can be obtained by directly solving the energy equation, and the effect of the compressibility of the coupling part can be coupled; the different pressure is analyzed by the analysis of the pressure. The lower layer flow chemical thermodynamics data table, the pressure correction coefficient of the reaction progress variable source term is given, the pressure correction of the reaction progress variable source term is corrected. The advantage of this method is that the pressure change of the flow field can be considered on the basis of the size of the chemical thermodynamics data sheet, and can be popularized and applied to the construction of the table with the reaction progress variable. In the model of the supersonic lateral jet combustion calculation, on the basis of the above temperature and pressure correction, a method of correcting the initial temperature in the self ignition model is proposed, considering the inhomogeneous distribution of the temperature caused by the compression / expansion of the fuel jet in the near field. The method of the compressible flame surface progress variable method is used for the DLR combustion of the supersonic ramp jet. RANS and LES numerical studies are carried out in the three-dimensional flow field and combustion field of the burning chamber. Compared with the RANS method, the pressure distribution in the cold state, the distribution of wave system, the distribution of velocity and the distribution of wave system in the combustion field, the velocity distribution, the distribution of velocity and the temperature distribution are all in accordance with the experimental values by the LES method. The.LES square method can predict the large scale turbulent pseudo sequence in the supersonic velocity. The structure and unsteady flow and combustion process can capture the interaction between the shock wave and the boundary layer, the mixing of the turbulent flow, the stationary flame and the reburning of the flame. The LES results show that the unsteady flame of the flameout reburning is formed in the shear layer on both sides of the blunt body, and a stable combustion part of the premixed flame is formed in the central reflux bubble of the combustor. Under the LES framework, the two probability density distributions of epsilon and beta are closed to the reaction schedule. The results show that the calculated results of the beta distribution of the probability density are in good agreement with the experiment. It is assumed that the delta distribution of the probability density does not take into account the subgrid pulsation of the reaction progress variable, and the average temperature is high. Therefore, the reaction progress variable is obtained. The subgrid pulsation is very important for the prediction of supersonic combustion. The large scale order structure and mixing characteristics of the supersonic lateral jet Gamba combustion chamber are studied by using the LES method. The mixed fraction probability density function is used to analyze the mixing characteristics of the upstream reflux region, the near field of the jet and the far field of the jet, and to discuss the flow of the jet flow. The effect of the volume ratio on the flow field structure, the penetration depth of the jet, the distribution of the scalar and the mixing efficiency. The results show that the reverse rotating vortex has a stronger interaction between the CVP structure and the wall boundary layer when the flux ratio is low. The mass fraction of the fuel is faster in the transverse direction and the mixing efficiency is higher. Considering the supersonic flow temperature is higher than that of the flow rate, the temperature of the flow is higher than that of the flow rate. The self ignition temperature of the fuel and the modified self ignition combustion model are used to study the structure of the flow field in the combustion chamber of the Gamba combustion chamber, the penetration depth of the jet, the structure of the vortex and the characteristics of the combustion. As the reaction exothermic, the reverse rotating vortices of the combustion field increase the structure of the TCVP structure with the reverse rotating vortex of the CVP and the wake, and the penetration depth of the jet is increased. The combustion of the combustion is calculated. The three combustion reaction regions: the ignition point upstream of the jet inlet, the shear layer of the jet and the wake region of the near wall jet. The stability of the wake region in the near wall jet is mainly controlled by the reverse rotating vortex of the wake to the TCVP structure.
【學位授予單位】:中國科學技術(shù)大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TK16
【相似文獻】
相關(guān)期刊論文 前10條
1 胡欲立;劉歐子;蔡元虎;;液體煤油超聲速燃燒的三維數(shù)值分析[J];燃燒科學與技術(shù);2007年03期
2 周建興;樸英;陳美寧;豈興明;劉兆舒;;三種不同結(jié)構(gòu)超聲速燃燒室流場的數(shù)值研究[J];航空動力學報;2008年01期
3 宋文艷;肖隱利;樂嘉陵;;電阻加熱器在超聲速燃燒研究中的應用[J];航空動力學報;2008年12期
4 王江峰;伍貽兆;;三維典型超聲速燃燒室流場數(shù)值模擬[J];南京航空航天大學學報;2008年03期
5 仲峰泉;范學軍;俞剛;;帶主動冷卻的超聲速燃燒室傳熱分析[J];推進技術(shù);2009年05期
6 袁越明;楊猛;張?zhí)┎?范學軍;;脈沖紋影技術(shù)及其在超聲速燃燒室流場顯示中的應用[J];推進技術(shù);2013年01期
7 楊銀軍;竇志國;段立偉;;等離子體強化超聲速燃燒研究進展[J];機電產(chǎn)品開發(fā)與創(chuàng)新;2013年03期
8 劉興洲,劉敬華,王裕人,葛運圻,楊麗新,胡欲立;超聲速燃燒實驗研究(Ⅱ)[J];推進技術(shù);1993年04期
9 袁生學;論超聲速燃燒[J];中國科學(A輯);1998年08期
10 俞剛,張新宇,李建國;超聲速氣流中的煤油噴霧研究[J];流體力學實驗與測量;2001年04期
相關(guān)會議論文 前10條
1 顧洪斌;陳立紅;張新宇;;超聲速燃燒與射流的實驗與計算研究[A];第二屆高超聲速科技學術(shù)會議會議日程及摘要集[C];2009年
2 孫英英;姜宗林;;超聲速燃燒室中流動與燃燒的相互作用[A];第一屆高超聲速科技學術(shù)會議論文集[C];2008年
3 王晶;范學軍;仲峰泉;李建國;俞剛;;超臨界煤油的亞/超聲速噴注對超聲速燃燒性能的影響實驗研究[A];第二屆高超聲速科技學術(shù)會議會議日程及摘要集[C];2009年
4 李龍;范學軍;王晶;;超聲速燃燒室熱/力環(huán)境及其測量技術(shù)研究[A];第三屆高超聲速科技學術(shù)會議會議文集[C];2010年
5 陳堅強;張毅鋒;;一種超聲速燃燒流動混合增強的新技術(shù)[A];2003’全國流體力學青年研討會論文集[C];2003年
6 王曦;仲峰泉;陳立紅;張新宇;;超聲速燃燒室對流傳熱特性數(shù)值研究[A];高超聲速專題研討會暨第五屆全國高超聲速科學技術(shù)會議論文集[C];2012年
7 俞剛;李建國;;超聲速燃燒研究的幾點認識[A];高超聲速專題研討會暨第五屆全國高超聲速科學技術(shù)會議論文集[C];2012年
8 曹瑞峰;崔濤;于達仁;;兩點燃料注入超聲速燃燒壓力分布優(yōu)化控制方法[A];高超聲速專題研討會暨第五屆全國高超聲速科學技術(shù)會議論文集[C];2012年
9 王曦;仲峰泉;陳立紅;張新宇;;超聲速燃燒室對流傳熱特性數(shù)值研究[A];第七屆全國流體力學學術(shù)會議論文摘要集[C];2012年
10 ;高超專題-超聲速燃燒[A];第七屆全國流體力學學術(shù)會議論文摘要集[C];2012年
相關(guān)重要報紙文章 前1條
1 蘇恩澤;空天新科技引領(lǐng)新變革[N];學習時報;2009年
相關(guān)博士學位論文 前3條
1 曹長敏;超聲速燃燒中可壓縮湍流燃燒模型研究[D];中國科學技術(shù)大學;2015年
2 胡吉超;光壁面超聲速燃燒室點火及火焰穩(wěn)定研究[D];哈爾濱工業(yè)大學;2014年
3 韓省思;超聲速燃燒中湍流模型的研究[D];中國科學技術(shù)大學;2009年
相關(guān)碩士學位論文 前3條
1 邢建文;超聲速燃燒室流場的數(shù)值模擬及與實驗結(jié)果的比較[D];國防科學技術(shù)大學;2002年
2 王青;超聲速燃燒室流固耦合傳熱特性研究[D];哈爾濱工業(yè)大學;2012年
3 張聰;高超聲速燃燒室壁面熱流辨識方法研究[D];哈爾濱工業(yè)大學;2011年
,本文編號:1790395
本文鏈接:http://sikaile.net/kejilunwen/dongligc/1790395.html