基于能量最小化原理的地圖要素移位算法研究與改進(jìn)
[Abstract]:With the rapid development of computer technology and the wide application of geographic information system in the field of cartography, the need for map generalization automation in digital environment is becoming more and more urgent. Although scholars at home and abroad have made a long-term and unremitting exploration on the map synthesis shift algorithm, there are still many problems that have not been effectively solved, which are highlighted in the following aspects: (a) Shift is an optimization problem constrained by a variety of cartographic synthesis rules, but the existing algorithms for all kinds of cartography. Consideration of synthesis rules is insufficient; (b) the corresponding relations between mathematical models, parameters and constraints of map synthesis rules in existing shift algorithms need to be further studied; (c) it is still difficult to maintain the consistency between spatial relations and spatial structures of map objects (groups). Starting from the actual demand of graph space conflict resolution in graph synthesis, this paper analyzes the mechanism of adjacent conflict between map objects and the essential characteristics of displacement operation. Focusing on Beams and Snakes energy minimization displacement algorithm, this paper studies the spatial conflict recognition and displacement of road and building elements in map deeply. Through model and algorithm The main contents of this paper are as follows: (1) Based on the basic concepts of map synthesis shift operation, the mechanism of spatial conflict between map objects is analyzed. On the basis of summarizing the constraints of map synthesis oriented to shift operator, a conceptual framework of shift algorithm is given, and the basic principle and mathematical model of energy minimization algorithm are expounded, which lays the theoretical foundation of this paper. (2) By extending the SDS (Simplicial data structure) map data model, a new shift algorithm is constructed. In this model, the spatial proximity between map objects is clearly defined, and the algorithms of spatial proximity search, skeleton line extraction and spatial proximity conflict recognition among various map objects (groups) are implemented, so as to calculate the displacement. (3) A shape parameter setting method for Snakes model is proposed, which takes into account the grade attribute of road elements and the characteristics of road curved graphics. The displacement effect of the method is controlled to a certain extent by the shape parameters of the model (elastic parameter a and rigid parameter beta), but there is still no quantitative parameter setting method at present. Thus, the hierarchical attributes and graphical features of the road are taken into account, and the adaptability and controllability of shape parameter setting in Snakes model are enhanced. (4) Three improvements are proposed to the Beams energy minimization shift algorithm: (a) A Beams model material parameter automation algorithm is proposed to reduce the complexity of the parameters. Setting method improves the automation level of the algorithm; (b) Applying attraction to the object with too large displacement enhances the control effect of the algorithm on the position accuracy of the map object; (c) Adopting a new iterative strategy, calling the intermediate result of each iteration as a new input to the next iteration process, thus making the model (5) Combining the improved Beams shift algorithm with the auxiliary map data model, two kinds of displacement algorithms supported by spatial auxiliary structures are designed for the displacement problem of two typical map elements, building group and road network: (a) the construction supported by adjacent map Building Group Shifting Algorithm: (b) Road Element Shifting Algorithm Supported by Enhanced Road Network. In Building Group Shifting Algorithm, a neighborhood map expressing the spatial distribution characteristics of buildings is constructed based on CDT skeleton line, and the neighborhood map is adjusted by using local building grouping information, so that the construction can be maintained at both global and local levels. In the algorithm of road element displacement, the supporting effect of spatial auxiliary structure on displacement operation is further expanded, and an enhanced road network is constructed to correlate buildings near displaced road sections and other adjacent roads. The method of dividing the shift operation area centered on the conflict points ensures that the displacement deformation can be fully propagated in a suitable range and better maintains the spatial relationship and spatial distribution characteristics between the road and its adjacent map objects. (6) Based on ArcGIS Engine, the model and algorithm proposed in this paper are implemented. The validity and superiority of the algorithm are verified by several typical road network and building group map data.
【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:P208
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王曉東;解非線性0-1規(guī)劃的一個(gè)算法及其在結(jié)構(gòu)優(yōu)化中的應(yīng)用[J];數(shù)值計(jì)算與計(jì)算機(jī)應(yīng)用;1988年01期
2 張曉;;基于密度聚類算法的異常檢測(cè)[J];伊犁師范學(xué)院學(xué)報(bào)(自然科學(xué)版);2010年04期
3 陳沐天;找周期子字的算法[J];應(yīng)用數(shù)學(xué)學(xué)報(bào);1991年01期
4 丁才昌;方勃;魯小平;;分布估計(jì)算法及其性能研究[J];武漢大學(xué)學(xué)報(bào)(理學(xué)版);2005年S2期
5 石明蘭;楊暉;葉東毅;;面向目標(biāo)的關(guān)聯(lián)規(guī)則挖掘的一個(gè)FP增長(zhǎng)算法[J];集美大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年02期
6 張維群;;基于海量數(shù)據(jù)關(guān)聯(lián)效應(yīng)測(cè)度算法的設(shè)計(jì)[J];統(tǒng)計(jì)與信息論壇;2012年07期
7 羅蕾,徐洪利;構(gòu)造Dn-最優(yōu)確切設(shè)計(jì)的優(yōu)化方法──離散算法[J];遼寧大學(xué)學(xué)報(bào)(自然科學(xué)版);1999年02期
8 賀永恒;王斌;;基于蟻群算法的候選標(biāo)簽子集構(gòu)造方法研究[J];中國(guó)科技信息;2014年06期
9 武小悅,沙基昌;構(gòu)造網(wǎng)絡(luò)不交化最小路集的一種新算法[J];系統(tǒng)工程理論與實(shí)踐;2000年01期
10 姜建國(guó);劉永青;劉夢(mèng)楠;王國(guó)林;李f ;;類電磁機(jī)制算法研究與改進(jìn)[J];計(jì)算力學(xué)學(xué)報(bào);2014年01期
相關(guān)會(huì)議論文 前2條
1 潘志明;鄭駿;錢衛(wèi)寧;周傲英;;構(gòu)造XML相似相關(guān)結(jié)構(gòu)庫(kù)的一種有效方法[A];第二十屆全國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2003年
2 林景亮;董槐林;姜青山;吳書;;一種基于新增閾值的頻繁模式挖掘算法[A];第二十三屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(研究報(bào)告篇)[C];2006年
相關(guān)博士學(xué)位論文 前9條
1 張磊;基于概念格的角色工程相關(guān)算法研究[D];哈爾濱工業(yè)大學(xué);2015年
2 孟靜;新型Krylov子空間算法及其應(yīng)用研究[D];電子科技大學(xué);2015年
3 胡芳;復(fù)雜網(wǎng)絡(luò)節(jié)點(diǎn)中心性多元評(píng)估與社團(tuán)探測(cè)新算法研究[D];華中師范大學(xué);2015年
4 肖建元;保幾何結(jié)構(gòu)算法在等離子體物理中的應(yīng)用[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年
5 劉遠(yuǎn)剛;基于能量最小化原理的地圖要素移位算法研究與改進(jìn)[D];武漢大學(xué);2015年
6 唐益明;(1,,2,2)型異蘊(yùn)涵泛三I算法及其應(yīng)用研究[D];合肥工業(yè)大學(xué);2011年
7 牛云云;求解計(jì)算困難問題的膜計(jì)算模型與算法研究[D];華中科技大學(xué);2012年
8 李冬冬;基因組序列標(biāo)注的算法與理論研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2004年
9 周琨;航空公司航班運(yùn)行調(diào)度模型與算法研究[D];南京航空航天大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 閆銘;基于度量學(xué)習(xí)的不完整數(shù)據(jù)聚類方法研究[D];哈爾濱工業(yè)大學(xué);2015年
2 張小瓊;基于改進(jìn)螢火蟲群優(yōu)化算法的BP神經(jīng)網(wǎng)絡(luò)研究[D];廣西大學(xué);2015年
3 李俊杰;基于蟻群算法的聚類區(qū)分器設(shè)計(jì)研究[D];電子科技大學(xué);2014年
4 艾慧;天波雷達(dá)電離層污染校正與測(cè)高算法研究[D];電子科技大學(xué);2015年
5 陳紅強(qiáng);大規(guī)模并行排序?qū)W習(xí)算法研究[D];西安電子科技大學(xué);2014年
6 郭艷茹;k-中心平面聚類模型與算法研究[D];浙江工業(yè)大學(xué);2015年
7 彭輝輝;基于壓縮感知的心電信號(hào)壓縮算法研究[D];東南大學(xué);2015年
8 葛娜;高效用項(xiàng)集動(dòng)態(tài)挖掘算法的研究[D];中北大學(xué);2016年
9 葉馨;閉項(xiàng)集挖掘算法在醫(yī)保目錄制定問題上的研究與應(yīng)用[D];中國(guó)科學(xué)技術(shù)大學(xué);2016年
10 張靚云;面向微博的事件摘要生成算法研究與實(shí)現(xiàn)[D];西南交通大學(xué);2016年
本文編號(hào):2190108
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2190108.html