GGOS對流層延遲產(chǎn)品精度分析及在PPP中的應(yīng)用
[Abstract]:Tropospheric delay is the main error source for satellite navigation and positioning. GNSS wide area enhancement requires high accuracy tropospheric delay products for error correction. The tropospheric delay can be estimated in real time by GNSS, and the global tropospheric zenith delay product released by GNSS can also be obtained by using the numerical weather forecast model with multi-source data, and the global tropospheric zenith delay product can be calculated by GNSS. Its accuracy can reach 4 mm, time resolution is 5 min, but its distribution is uneven. There is no data coverage. GGOS Atmosphere is based on ECMWF 40 years reanalysis data. The global zenith tropospheric total delay grid data with a temporal resolution of 6 h and a spatial resolution of 2.5 擄脳 2 擄since 1979 can be provided. Based on the ZTD data of global IGS station in 2015, this paper evaluates the ZTD products of GGOS, and studies the system difference between GGOS Atmosphere tropospheric delay products and ZTD data released by IGS. The differential coefficients of GGOS-ZTD and IGSZTD system (including proportional error a and fixed error b),) are estimated by linear fitting. Then the spherical harmonic expansion of proportional error a and fixed error b is carried out, and the system difference model between two kinds of ZTD data sources is established. IGS stations and land-based network stations are selected to study the effect of the GGOSZTD product after the correction of the additional system deviation on the convergence rate of the PPP. The results show that there is a systematic deviation between IGS-ZTD and GGOS-ZTD, the average bias is -0.54 cm, and the average RMS between the two is 1.31 cm, which indicates that the GGOS-ZTD product can meet the needs of GNSS navigation users for tropospheric delay correction. The GGOS-ZTD product, which has been corrected, is used in the PPP test of the pan station and the YNMH station. It is found that the convergence rate of the positioning can be improved obviously, especially in the U direction, and the convergence rate is increased by 10.58%, 31.68%, 43.89%, 51.46%, 14.69% and 18.40%, respectively, in the direction of U, and the following results are obtained: (1) in the direction of U, the speed of convergence is 10.58%, especially in the direction of U, the convergent speed is increased by 10.58% and 31.68%, respectively, and the speed of convergence is increased by 51.46% and 14.69%.
【作者單位】: 武漢大學(xué)測繪學(xué)院;
【分類號】:P228.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳中新;朱麗強(qiáng);;區(qū)域氣象特征對流層延遲模型的建設(shè)研究[J];城市勘測;2010年04期
2 戴吾蛟;陳招華;匡翠林;蔡昌盛;;區(qū)域精密對流層延遲建模[J];武漢大學(xué)學(xué)報(信息科學(xué)版);2011年04期
3 朱爽;姚宜斌;張瑞;;天頂對流層延遲計算方法研究[J];大地測量與地球動力學(xué);2011年03期
4 任婷;曲國慶;張華榮;袁興明;;基于小波相關(guān)性的對流層延遲改正數(shù)據(jù)分析[J];山東理工大學(xué)學(xué)報(自然科學(xué)版);2012年04期
5 趙慶志;張書畢;;基于反投影方法的對流層延遲三維層析研究[J];大地測量與地球動力學(xué);2013年04期
6 周淼;劉立龍;張騰旭;張朋飛;黃良珂;;綜合時間序列與高程的天頂對流層延遲模型研究[J];城市勘測;2014年02期
7 徐杰;孟黎;任超;徐軍;;對流層延遲改正中投影函數(shù)的研究[J];大地測量與地球動力學(xué);2008年05期
8 孫曉;張立輝;王勇;楊晶;;利用多元回歸方法改正對流層延遲插值誤差[J];大地測量與地球動力學(xué);2012年S1期
9 鄭作亞,盧秀山,韓曉冬,宮維坤;利用多參數(shù)估計法解算對流層延遲[J];山東科技大學(xué)學(xué)報(自然科學(xué)版);2001年04期
10 趙佩銘;陳義;于松松;樓立志;;長三角區(qū)域?qū)α鲗友舆t簡易模型的建立[J];全球定位系統(tǒng);2012年06期
相關(guān)會議論文 前10條
1 白志強(qiáng);劉巖;饒才杰;呂達(dá);;一種對流層延遲模型誤差改正的實現(xiàn)方法[A];第四屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會論文集-S8衛(wèi)星導(dǎo)航模型與方法[C];2013年
2 王苗苗;李博峰;沈云中;樓立志;;全球?qū)α鲗友舆t產(chǎn)品評估及其在北斗導(dǎo)航中應(yīng)用[A];第五屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會論文集-S1 北斗/GNSS導(dǎo)航應(yīng)用[C];2014年
3 駱金超;楊粉花;;淺談對流層對GPS定位的影響[A];江蘇省測繪學(xué)會2007'學(xué)術(shù)年會論文集[C];2008年
4 汪登輝;高成發(fā);潘樹國;;基于網(wǎng)絡(luò)RTK的對流層延遲分析與建模[A];第三屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會電子文集——S08衛(wèi)星導(dǎo)航模型與方法[C];2012年
5 鐘萍;黃丁發(fā);袁林果;丁曉利;;超高層建筑物GPS動態(tài)變形監(jiān)測中對流層效應(yīng)影響研究[A];第一屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會論文集(下)[C];2010年
6 張偉;許愛華;蘇睿;;運載火箭GPS彈道確定中的區(qū)域?qū)α鲗友舆t修正模型[A];第五屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會論文集-S8 衛(wèi)星導(dǎo)航模型與方法[C];2014年
7 宋淑麗;朱文耀;陳欽明;趙靜e,
本文編號:2180266
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2180266.html