全球生態(tài)地理分區(qū)知識庫的構(gòu)建與應用
本文選題:生態(tài)地理分區(qū) + 知識庫 ; 參考:《北京建筑大學》2017年碩士論文
【摘要】:隨著人工智能的不斷發(fā)展,知識庫和專家系統(tǒng)被逐漸引入到遙感領域中,尤其是針對遙感目標地物的識別和分類。當前地表覆蓋變化檢測多是從基于像素級別的遙感影像,當面對全球范圍內(nèi)復雜多樣的地類,會存在大量同物異譜和異物同譜的現(xiàn)象,同時由于物候原因,在變化檢測的過程中都會存在大量的偽變化。想要得到高精度的變化檢測結(jié)果,要對檢測后的變化圖斑進行偽變化識別與剔除。目前變化檢測后的偽變化一般是利用人工來識別,不僅浪費時間、耗費大量資源,而且由于識別人員知識的儲備不足很容易造成錯判。因此,急需建立一個地類知識庫,用來自動識別變化檢測后的偽變化。全球生態(tài)地理分區(qū)由于其全球性、分區(qū)地類穩(wěn)定性、地物變化規(guī)律性和信息量大等特點,可以用來構(gòu)建知識庫輔助變化檢測。本文針對以往遙感影像變化檢測存在的問題,提出了一種基于生態(tài)地理知識庫來實現(xiàn)偽變化識別的方法,并從知識庫的結(jié)構(gòu)、內(nèi)容設計,知識的表達入庫,再到知識庫管理系統(tǒng)的建立,最后設計了生態(tài)去偽插件,實現(xiàn)了利用規(guī)則庫中的規(guī)則識別偽變化,完成了整個去偽流程的結(jié)構(gòu)設計和功能實現(xiàn)。首先,設計并構(gòu)建了包括分區(qū)偽變化規(guī)則庫、地表覆蓋變化規(guī)則庫和專題資料庫在內(nèi)的生態(tài)地理分區(qū)知識庫,并對知識庫中的偽變化規(guī)則做了部分示例,其中對生態(tài)分區(qū)偽規(guī)則庫采用面向?qū)ο蟮姆椒ㄟM行設計,有效的實現(xiàn)了規(guī)則類之間的繼承,提高了偽變化識別的推理效率。其次,利用對象關系型數(shù)據(jù)庫PostgreSQL對知識庫采用數(shù)據(jù)庫的形式存儲,并采用C#語言和ArcEngine開發(fā)了生態(tài)地理分區(qū)知識庫管理系統(tǒng)。最后,建立生態(tài)去偽插件實現(xiàn)了利用知識庫中的規(guī)則識別偽變化,并選取北京市和杰克遜市兩個實驗區(qū)對剔除偽變化后的變化圖斑做了精度驗證。結(jié)果表明,利用生態(tài)地理分區(qū)知識庫來進行偽變化的識別不僅提高了自動化程度,而且提高了變化檢測的精度。
[Abstract]:With the development of artificial intelligence, knowledge base and expert system are gradually introduced into the field of remote sensing, especially for the recognition and classification of remote sensing objects.At present, the detection of surface cover change is mostly based on pixel level remote sensing images. In the face of complex and diverse ground species in the global scope, there will be a large number of isospectral and foreign body isospectral phenomena, at the same time, due to phenological reasons,In the process of change detection, there will be a large number of pseudo changes.In order to obtain high precision change detection results, the change pattern after detection should be identified and eliminated.At present, the pseudo-change after change detection is usually identified by manual, which not only wastes time and consumes a lot of resources, but also easily leads to misjudgment because of the lack of knowledge of recognizer.Therefore, there is an urgent need to establish a knowledge base for automatic identification of pseudo changes after change detection.The global ecogeographic zoning can be used to construct a knowledge base for aided change detection because of its global, regional stability, the regularity of ground object change and the large amount of information.In this paper, aiming at the existing problems of remote sensing image change detection in the past, a method based on ecological geographical knowledge base is put forward to realize the identification of pseudo change, and the structure of knowledge base, the content design and the representation of knowledge are put into database.Then to the establishment of the knowledge base management system, finally designed the ecological de-counterfeiting plug-in, using the rules in the rule base to identify the pseudo changes, completed the structure design and functional implementation of the whole de-counterfeiting process.First of all, the paper designs and constructs the knowledge base of ecological geography partition including partition pseudo-change rule base, surface cover change rule base and thematic database, and makes some examples of pseudo-change rule in knowledge base.Among them, the object oriented method is used to design the pseudo-rule base of ecological partition, which effectively realizes the inheritance between rule classes and improves the reasoning efficiency of pseudo-change recognition.Secondly, the object relational database (PostgreSQL) is used to store the knowledge base in the form of database, and the ecological geographical partition knowledge base management system is developed by using C # language and ArcEngine.Finally, the ecological de-counterfeiting plug-in is established to recognize the pseudo-change by using the rules in the knowledge base, and two experimental areas of Beijing and Jackson are selected to verify the accuracy of the change pattern after eliminating the pseudo-change.The results show that the recognition of pseudo-change by using the knowledge base of ecogeographic partition not only improves the degree of automation but also improves the accuracy of change detection.
【學位授予單位】:北京建筑大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:P237
【參考文獻】
相關期刊論文 前10條
1 張委偉;陳軍;廖安平;韓剛;陳學泓;陳利軍;彭舒;武昊;張俊;;顧及多元知識的GlobeLand30檢核優(yōu)化模型[J];中國科學:地球科學;2016年09期
2 劉吉羽;彭舒;陳軍;廖安平;張宇碩;;基于知識的GlobeLand30耕地數(shù)據(jù)質(zhì)量檢查方法與工程實踐[J];測繪通報;2015年04期
3 郭笑怡;張洪巖;;生態(tài)地理分區(qū)框架下的大興安嶺植被動態(tài)研究[J];地理科學;2013年02期
4 張清雨;趙東升;吳紹洪;戴爾阜;;基于生態(tài)分區(qū)的內(nèi)蒙古地區(qū)植被覆蓋變化及其影響因素研究[J];地理科學;2013年05期
5 宋策;李靖;周孝德;;基于水生態(tài)分區(qū)的太子河流域水生態(tài)承載力研究[J];西安理工大學學報;2012年01期
6 高江波;黃姣;李雙成;蔡運龍;;中國自然地理區(qū)劃研究的新進展與發(fā)展趨勢[J];地理科學進展;2010年11期
7 張戈麗;歐陽華;張憲洲;周才平;徐興良;;基于生態(tài)地理分區(qū)的青藏高原植被覆被變化及其對氣候變化的響應[J];地理研究;2010年11期
8 牛振國;宮鵬;程曉;虢建宏;王琳;黃華兵;沈少青;吳昀昭;王曉風;王顯威;應清;梁璐;張麗娜;王雷;姚謙;楊鎮(zhèn)鐘;郭子祺;戴永久;;中國濕地初步遙感制圖及相關地理特征分析[J];中國科學(D輯:地球科學);2009年02期
9 王巍;賀建軍;;基于數(shù)據(jù)庫技術的氣流干燥專家系統(tǒng)知識庫的建立[J];自動化與儀表;2007年03期
10 張晶;吳紹洪;劉燕華;楊勤業(yè);張月鴻;;土地利用和地形因子影響下的西藏農(nóng)業(yè)產(chǎn)值空間化模擬[J];農(nóng)業(yè)工程學報;2007年04期
相關博士學位論文 前2條
1 湯小華;福建省生態(tài)功能區(qū)劃研究[D];福建師范大學;2005年
2 羅紅霞;地學知識輔助遙感進行山地丘陵區(qū)基于系統(tǒng)分類標準的土壤自動分類方法研究[D];武漢大學;2005年
相關碩士學位論文 前2條
1 周昀罡;基于知識的道路信息提取方法研究[D];四川師范大學;2013年
2 孔艷;基于生態(tài)環(huán)境和遙感數(shù)據(jù)的生態(tài)地理分區(qū)研究[D];南京大學;2013年
,本文編號:1754404
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/1754404.html