消逝模腔可調濾波器研究
本文選題:消逝模腔 + 品質因數(shù); 參考:《電子科技大學》2017年碩士論文
【摘要】:可調濾波器在電子對抗、微波測量等諸多領域都有著重要用途,然而現(xiàn)有YIG(釔鐵石榴石)可調濾波器存在功耗高、不易集成的缺點。同時,近年來先后開發(fā)的多種平面可調濾波器都存在寬可調范圍與高品質因數(shù)不能兼容的問題。所以研制一種易于集成的寬可調范圍、高品質因數(shù)的可調濾波器具有重要價值。為此,本文以新興的消逝模腔可調濾波器為研究對象,對影響消逝模腔品質因數(shù)與諧振頻率調諧范圍的因素進行了仿真分析,并對消逝模腔可調濾波器原型器件的加工進行了探索。主要成果和結論如下:1.運用HFSS電磁仿真軟件分析了消逝模諧振腔的電磁場結構及其尺寸參數(shù)對諧振腔性能的影響。結果顯示有助于提高諧振頻率的方法包括:減小諧振腔的物理尺寸、在調諧電容極板間增加介質薄膜以及提高介質薄膜的厚度與所用介質材料的介電系數(shù)。但這些方法都會對品質因數(shù)帶來不同程度的惡化。最終選取腔體半徑為6.5mm;加載柱高度為3.5mm;加載柱半徑為1mm;加載電容極板初始間距為10μm為諧振腔的最終尺寸,在加載電容極板間距由10μm增加到50μm條件下,仿真得到的諧振腔的頻率調諧范圍為2.46GHz-5.02GHz,品質因數(shù)為975-1469。2.使用1中的諧振腔設計了二階最大平坦型可調濾波器。對可調濾波器的仿真模型進行分析,得到在加載電容極板間距由5μm增大到15μm過程中,濾波器中心頻率調諧范圍為:1.74GHz-2.85GHz;插入損耗:0.86dB-1.35dB;3dB相對帶寬:1.89%-2.07%。3.以仿真模型為基礎加工出可調濾波器原型器件,使用矢量網(wǎng)絡分析儀對諧振腔與濾波器的加工實物進行測試分析。得到在0-100V調諧電壓下,諧振腔的諧振頻率調諧為2.49GHz-4.42GHz,諧振腔的無載品質因數(shù)為:49-108。而實測的可調濾波器的中心頻率在3.05GHz-3.73GHz連續(xù)可調;3dB相對帶寬為:2.68%-2.75%;插入損耗為:8.42dB-9.87dB。
[Abstract]:Tunable filters have important applications in many fields, such as electronic countermeasures and microwave measurements. However, the existing YIG tunable filters have the disadvantages of high power consumption and difficult integration. At the same time, many planar tunable filters developed in recent years have the problem of wide adjustable range and incompatibility with high quality factor. Therefore, it is of great value to develop a tunable filter with wide adjustable range and high quality factor which is easy to integrate. Therefore, this paper takes the new evanescent cavity tunable filter as the research object, and simulates the factors that affect the tuning range of the quality factor and resonant frequency of the evanescent cavity. The fabrication of the prototype device of evanescent mode cavity tunable filter is also discussed. The main findings and conclusions are as follows: 1. The electromagnetic field structure of the evanescent mode resonator and the influence of its size parameters on the cavity performance are analyzed by using HFSS electromagnetic simulation software. The results show that the methods to improve the resonant frequency include reducing the physical size of the resonator, increasing the dielectric film between the tunable capacitor plates, and increasing the thickness of the dielectric film and the dielectric coefficient of the dielectric material used. However, these methods will bring about varying degrees of deterioration of the quality factor. Finally, the cavity radius is 6.5 mm, the loading column height is 3.5 mm, the loading column radius is 1 mm, and the initial spacing of the loaded capacitor plate is 10 渭 m as the final size of the resonator. When the distance between the loaded capacitor plates is increased from 10 渭 m to 50 渭 m, The frequency tuning range of the resonator is 2.46 GHz to 5.02 GHz and the quality factor is 975-1469.2 GHz. The second order maximum flat tunable filter is designed by using the resonator in 1. By analyzing the simulation model of the tunable filter, it is obtained that the tuning range of the center frequency of the filter is: 1.74 GHz ~ 2.85 GHz, and the insertion loss is: 0.86 dB-1.35 dB relative bandwidth: 1.89 -2.07 .3.When the capacitor plate spacing is increased from 5 渭 m to 15 渭 m, the filter center frequency tuning range is: 1.74 GHz ~ 2.85 GHz, and the insertion loss is: 0.86 dB-1.35 dB relative bandwidth: 1.89 -2.07. 3. Based on the simulation model, the prototype device of tunable filter is fabricated, and the resonator and filter are tested and analyzed by using vector network analyzer. The tuning frequency of the resonator is 2.49GHz-4.42GHz at 0-100V tuning voltage, and the no-load quality factor of the cavity is: 1 / 49-108. The measured center frequency of the tunable filter is 3 dB relative bandwidth of 3 dB continuously adjustable at 3.05GHz-3.73GHz, and the insertion loss is: 1 8.42 dB-9.87 dB.
【學位授予單位】:電子科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TN713
【相似文獻】
相關期刊論文 前2條
1 何強;;塑料模具強度設計應注意的幾個問題[J];家用電器科技;1987年03期
2 何文希;宋志杰;;CW脈沖回波信號的最小方差無畸變響應自適應檢測[J];聲學技術;2014年02期
相關博士學位論文 前3條
1 賈定宏;電磁可調以及多層SIW濾波器研究[D];西南交通大學;2017年
2 李飛;并聯(lián)型NPC三電平有源電力濾波器關鍵技術研究[D];中國礦業(yè)大學;2017年
3 王碩;注塑成型過程模腔內熔體流動速度與壓力檢測控制方法研究[D];浙江大學;2012年
相關碩士學位論文 前10條
1 陳建男;消逝模腔可調濾波器研究[D];電子科技大學;2017年
2 汪龍;平面饋入式多層腔體濾波器研究[D];電子科技大學;2017年
3 胡南;基于表面等離子激元的多功能矩形腔濾波器的設計與優(yōu)化[D];蘭州大學;2017年
4 王乾豐;熱光可調諧濾波器及其關鍵技術研究[D];電子科技大學;2017年
5 毋茜;可重構濾波器的研究與設計[D];電子科技大學;2017年
6 梁碩;基于新型諧振器的微帶濾波器設計[D];電子科技大學;2017年
7 何超;基于表面等離子體激元的濾波器與解波分復用器理論研究[D];西南大學;2017年
8 馬鍇;基于環(huán)形諧振器的新型可調控多通道濾波器[D];哈爾濱工業(yè)大學;2017年
9 馬明明;微波平面多通帶濾波器的研究[D];電子科技大學;2017年
10 張潔;小型化抗過載射頻收發(fā)機技術研究[D];電子科技大學;2017年
,本文編號:1836709
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1836709.html