可充鋰空氣電池關(guān)鍵材料研究
發(fā)布時間:2019-05-23 12:05
【摘要】:可充鋰空氣電池具有能量密度高(達5200Wh kg-1,氧計算在內(nèi)),綠色環(huán)保等優(yōu)點,是目前備受關(guān)注的電化學(xué)能量存儲體系。自K. M.Abraham構(gòu)造出首個可充鋰空氣電池以來,世界各國科學(xué)家已經(jīng)對其展開大量的基礎(chǔ)研究工作。雖然已經(jīng)取得一些初步研究成果,但是對于可充鋰空氣電池研究仍然處于初級階段,在實用化之前,兩個關(guān)鍵性問題需要解決:1)在缺乏高效氧還原(ORR)和析氧(OER)雙效催化劑時,放電產(chǎn)物(過氧化鋰或氧化鋰)將會逐漸沉積于空氣電極空隙并堵塞電極,從而使得氧氣不能順利進入反應(yīng)界面,導(dǎo)致電池放電停止;2)碳酸酯及醚類電解液應(yīng)用在鋰空氣電池中不穩(wěn)定,在活性氧作用下非常容易分解,從而使得電池性能劣化。本論文針對氧還原/析氧雙效催化劑和電解質(zhì)體系存在的問題進行應(yīng)用基礎(chǔ)研究。主要研究內(nèi)容如下: 一、使用小分子含氮配體鄰菲Up啉螯合過渡金屬鈷得到鈷配合物,將鈷配合物負載于BP2000碳載體上,通過熱處理制得Co-N/C雙效催化劑,探索了熱處理溫度對Co-N/C催化劑性能的影響。結(jié)果表明,800℃熱處理的催化劑表現(xiàn)出最優(yōu)的電化學(xué)性能,旋轉(zhuǎn)圓盤測試證實,在有機電解液中為兩電子轉(zhuǎn)移機理,氧還原產(chǎn)物為過氧化鋰。Co-N/C催化劑在鋰空氣電池中首圈放電比容量為3221mAh g-(1按空氣電極中碳或催化劑質(zhì)量計算鋰空氣電池比容量),催化性能與大環(huán)化合物鈷卟啉(Co-P/C)催化劑相近。 二、基于所制備的Co-N/C雙效催化劑,制作鋰空氣電池空氣電極進行電解質(zhì)研究。制備了PVDF-HFP聚合物電解質(zhì),研究了納米SiO2作為添加劑對聚合物電解質(zhì)電化學(xué)性能的影響。結(jié)果表明所制備的聚合物電解質(zhì)表面致密、沒有缺陷孔。納米SiO2的添加降低了聚合物電解質(zhì)結(jié)晶度,提高了聚合物電解質(zhì)離子電導(dǎo)率(添加量為3%時離子電導(dǎo)率為1.3×10-5S cm-1,鋰離子遷移數(shù)為0.36),使用該聚合物電解質(zhì)制作的鋰空氣電池在電流密度為0.2mA cm-1時,展現(xiàn)了3163mAh g-1放電比容量。 三、為進一步提高PVDF-HFP聚合物電解質(zhì)離子電導(dǎo)率,使用離子液體PP13TFSI替代納米SiO2對電解質(zhì)進行改性后,電解質(zhì)離子電導(dǎo)率提高明顯(4.9×10-5S cm-1),使用該聚合物電解質(zhì)制作的鋰空氣電池充電極化減小0.2V(充電電壓為3.6V),電池的倍率性能得到提高:在電流密度為1mAcm-1時,展現(xiàn)了1246mAh g-1放電比容量。 四、針對電解液電化學(xué)穩(wěn)定性差的現(xiàn)象,研究了甲基磷酸二甲酯(DMMP)為有機溶劑的電解液電化學(xué)性能。1.0M LiTFSI-DMMP電解液具有較高室溫離子電導(dǎo)率(5.1×10-3S cm-1)和較寬電化學(xué)窗(5.5Vvs. Li/Li+)。循環(huán)伏安測試表明該電解液具有良好溶氧能力和氧氣擴散系數(shù),氧還原為多步驟過程,電解液還原起始電位為~2.5VLi/Li+,還原產(chǎn)物的氧化峰電流出現(xiàn)在~3.2VLi/Li+,低于碳酸酯電解液(~3.28VLi/Li+)和四乙二醇二甲醚電解液(~3.56VLi/Li+)。重復(fù)掃描50個周期后的循環(huán)伏安曲線發(fā)現(xiàn),LiTFSI-DMMP電解液峰電流輕微衰減,表明氧還原產(chǎn)物在玻碳電極表面沒有明顯積累。 五、基于全氟磺酸膜制備了LiTFSI-DMMP/PFSA-Li聚合物電解質(zhì)。電化學(xué)測試表明該電解質(zhì)具有寬的電化學(xué)窗口(5.0V vs. Li/Li+),室溫離子電導(dǎo)率高于PVDF-HFP聚合物電解質(zhì)一個數(shù)量級(1.4×10-4Scm-1),,鋰離子遷移數(shù)有所提高(0.48)。使用該聚合物電解質(zhì)制作鋰空氣電池,展現(xiàn)出非常高的充放電比容量以及倍率性能,在電流密度為1mA cm-1時,放電比容量2471mAh g-1。限定時間(兩小時)三十個充放電周期效率為98%。X射線光電子能譜表明放電產(chǎn)物為鋰氧化物,核磁結(jié)構(gòu)分析證實該電解質(zhì)在鋰空氣電池循環(huán)過程中結(jié)構(gòu)穩(wěn)定、沒有分解。
[Abstract]:The rechargeable lithium air cell has the advantages of high energy density (up to 5200 Wh kg-1, oxygen calculation), green and environmental protection and the like, and is an electrochemical energy storage system which is currently being paid attention to. Since the first rechargeable lithium-air battery has been constructed from K.M. Abraham, many of the world's scientists have worked on a large number of basic research. Although some preliminary results have been achieved, the study of rechargeable lithium-air cells is still in the primary stage, and two critical issues need to be addressed before practical:1) in the absence of a high-efficiency oxygen reduction (ORR) and an oxygen evolution (OER) double-effect catalyst, the discharge product (lithium peroxide or lithium oxide) will gradually deposit in the air electrode gap and block the electrode, so that the oxygen can not enter the reaction interface smoothly, causing the discharge of the battery to be stopped;2) the application of the carbonate and the ether type electrolyte in the lithium air battery is not stable, It is very easy to decompose under the action of active oxygen, thereby degrading the performance of the battery. This paper is based on the application of the oxygen reduction/ oxygen evolution double-effect catalyst and the electrolyte system. The main contents of the study are as follows: 1. the Co-N/ C double-effect catalyst is prepared by heat treatment to obtain a Co-N/ C double-effect catalyst by using a small molecular nitrogen-containing ligand o-phenanthrene and a transition metal cobalt to obtain a cobalt complex, The results show that the optimal electrochemical performance of the catalyst at 800 鈩
本文編號:2483879
[Abstract]:The rechargeable lithium air cell has the advantages of high energy density (up to 5200 Wh kg-1, oxygen calculation), green and environmental protection and the like, and is an electrochemical energy storage system which is currently being paid attention to. Since the first rechargeable lithium-air battery has been constructed from K.M. Abraham, many of the world's scientists have worked on a large number of basic research. Although some preliminary results have been achieved, the study of rechargeable lithium-air cells is still in the primary stage, and two critical issues need to be addressed before practical:1) in the absence of a high-efficiency oxygen reduction (ORR) and an oxygen evolution (OER) double-effect catalyst, the discharge product (lithium peroxide or lithium oxide) will gradually deposit in the air electrode gap and block the electrode, so that the oxygen can not enter the reaction interface smoothly, causing the discharge of the battery to be stopped;2) the application of the carbonate and the ether type electrolyte in the lithium air battery is not stable, It is very easy to decompose under the action of active oxygen, thereby degrading the performance of the battery. This paper is based on the application of the oxygen reduction/ oxygen evolution double-effect catalyst and the electrolyte system. The main contents of the study are as follows: 1. the Co-N/ C double-effect catalyst is prepared by heat treatment to obtain a Co-N/ C double-effect catalyst by using a small molecular nitrogen-containing ligand o-phenanthrene and a transition metal cobalt to obtain a cobalt complex, The results show that the optimal electrochemical performance of the catalyst at 800 鈩
本文編號:2483879
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2483879.html
最近更新
教材專著