基于神經(jīng)網(wǎng)絡(luò)和預(yù)測控制的感應(yīng)電機(jī)轉(zhuǎn)速控制系統(tǒng)研究
[Abstract]:In recent years, with the development of power electronics technology, control technology and computer technology, it has become an indisputable fact to replace DC drive control system with AC drive control system, in which induction motor has been widely used in motion control. Induction motor has the characteristics of high order, coupling and nonlinear. Vector control technology is widely used in motor control system. On this basis, a new control strategy is found to have high performance. Strong disturbance rejection and strong adaptability control system is a hot research topic at home and abroad. In recent years, model predictive control technology has many advantages, such as multi-objective, multi-variable, strong constraint and so on, which can improve the tracking, stability and robustness of the control system, and has attracted extensive attention in motion control. In the basic vector control servo system, the speed controller usually adopts the traditional controller, and it is very troublesome to find the parameters to make the system achieve the best performance by constantly debugging the controller coefficients in the application and design. Under the influence of the change of motor parameters and external load disturbance, the original good control system will be greatly reduced when the coefficient is fixed after adjustment. In this way, people begin to look for new control algorithms. Intelligent control technology has strong immunity and adaptability, and the parameters can be adjusted automatically, such as neural network, fuzzy control and so on. It is of great significance to apply intelligent control technology to the control system of incoming motor. In this paper, two aspects of research have been done. On the one hand, according to the basic principle and characteristics of model predictive control technology, the advantages of model predictive control are combined with the method of rotor magnetic field orientation, and the three-phase voltage source converter and induction motor are taken as the research object of predictive control. Taking the current in static 偽 尾 coordinate system as the state variable for optimization comparison, the servo system of current prediction induction motor is designed, and the improvement of system performance is deeply studied. On the other hand, aiming at the influence of external load disturbance or moment of inertia on the performance of motor control system, a neural network adaptive PI controller is proposed and applied to the speed loop. The simulation model of the system is built and verified in Matlab/Simulink environment. The simulation results show that the neural network PI speed controller has strong adaptability when the external environment changes compared with the basic controller. The simulation results show that the neural network speed controller can maintain good control performance when the load torque and moment of inertia change.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM346;TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王利平;張麗;;永磁同步電動(dòng)機(jī)電流預(yù)測控制[J];科學(xué)技術(shù)與工程;2013年09期
2 鄒宇;向鳳紅;王劍平;張果;王剛;;交流電機(jī)控制策略研究進(jìn)展[J];電機(jī)與控制應(yīng)用;2013年03期
3 李佳;劉乾;;基于神經(jīng)網(wǎng)絡(luò)的電機(jī)可靠性控制技術(shù)研究[J];計(jì)算機(jī)光盤軟件與應(yīng)用;2012年18期
4 牛里;楊明;劉可述;徐殿國;;永磁同步電機(jī)電流預(yù)測控制算法[J];中國電機(jī)工程學(xué)報(bào);2012年06期
5 王宏佳;徐殿國;楊明;;永磁同步電機(jī)改進(jìn)無差拍電流預(yù)測控制[J];電工技術(shù)學(xué)報(bào);2011年06期
6 程啟明;程尹曼;王映斐;汪明媚;;交流電機(jī)控制策略的發(fā)展綜述[J];電力系統(tǒng)保護(hù)與控制;2011年09期
7 胡斯登;趙爭鳴;袁立強(qiáng);魯挺;王雪松;;高性能變頻調(diào)速系統(tǒng)的離散控制問題研究[J];中國電機(jī)工程學(xué)報(bào);2010年30期
8 于蓉蓉;魏學(xué)業(yè);吳小進(jìn);覃慶努;;一種改進(jìn)型預(yù)測電流控制算法[J];電工技術(shù)學(xué)報(bào);2010年07期
9 朱昊;肖曦;李永東;;永磁同步電機(jī)轉(zhuǎn)矩預(yù)測控制的磁鏈控制算法[J];中國電機(jī)工程學(xué)報(bào);2010年21期
10 趙仁峰;何偉;姜朋昌;徐昕皓;段振華;;永磁交流伺服系統(tǒng)實(shí)驗(yàn)臺(tái)設(shè)計(jì)與研究[J];機(jī)械設(shè)計(jì)與制造;2010年01期
相關(guān)博士學(xué)位論文 前1條
1 徐祖華;模型預(yù)測控制理論及應(yīng)用研究[D];浙江大學(xué);2004年
相關(guān)碩士學(xué)位論文 前10條
1 高麗媛;永磁同步電機(jī)的模型預(yù)測控制研究[D];浙江大學(xué);2013年
2 張亞林;異步電機(jī)模型預(yù)測電流控制技術(shù)研究[D];華中科技大學(xué);2012年
3 馬坦;基于神經(jīng)網(wǎng)絡(luò)的交流調(diào)速系統(tǒng)智能算法研究[D];華中科技大學(xué);2009年
4 黎虎;基于DSP的直線感應(yīng)電機(jī)直接推力控制技術(shù)研究[D];南京航空航天大學(xué);2009年
5 姜朋昌;永磁交流伺服系統(tǒng)實(shí)驗(yàn)臺(tái)設(shè)計(jì)與研究[D];東北大學(xué);2008年
6 張金超;基于PID神經(jīng)網(wǎng)絡(luò)的三相感應(yīng)電動(dòng)機(jī)調(diào)速控制系統(tǒng)的研究[D];東北大學(xué);2008年
7 張明智;基于單神經(jīng)元控制的異步電動(dòng)機(jī)矢量控制系統(tǒng)[D];蘭州理工大學(xué);2008年
8 彭敏;伺服系統(tǒng)預(yù)測控制策略研究與設(shè)計(jì)[D];武漢理工大學(xué);2008年
9 鄧娟;基于BP神經(jīng)網(wǎng)絡(luò)的永磁同步電機(jī)自適應(yīng)控制研究[D];天津大學(xué);2007年
10 宋志強(qiáng);動(dòng)態(tài)遞歸神經(jīng)網(wǎng)絡(luò)在異步電機(jī)控制上的應(yīng)用[D];西華大學(xué);2007年
,本文編號:2483908
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2483908.html