基于輸電線路動態(tài)荷載的導(dǎo)線等值冰厚計算模型研究
發(fā)布時間:2018-05-06 16:49
本文選題:輸電線路 + 計算模型 ; 參考:《重慶大學(xué)》2014年博士論文
【摘要】:架空線路覆冰是影響電網(wǎng)安全運行的重要問題之一,導(dǎo)線覆冰將引發(fā)舞動、斷線、倒塔及絕緣子閃絡(luò)等重大事故,嚴(yán)重威脅著電網(wǎng)的安全可靠運行。 如何有效預(yù)測輸電線路覆冰厚度及準(zhǔn)確監(jiān)測導(dǎo)線覆冰增長,成為國內(nèi)外重要研究課題,對于電網(wǎng)覆冰后及時采取防冰、除冰措施,從而避免重大冰害事故的發(fā)生有重要意義。國內(nèi)外學(xué)者提出了眾多導(dǎo)線覆冰預(yù)測模型,然而由于覆冰影響因素復(fù)雜、模型參數(shù)測量不準(zhǔn)確等原因,使得模型計算的精確性受到質(zhì)疑,在工程中沒有得到廣泛應(yīng)用。因此,建立準(zhǔn)確的導(dǎo)線覆冰厚度預(yù)測模型、對導(dǎo)線覆冰增長過程進(jìn)行準(zhǔn)確地監(jiān)測,不僅對電網(wǎng)防冰減災(zāi)設(shè)計和建設(shè)有著重要的理論參考價值和學(xué)術(shù)意義,還能為相關(guān)部門及時采取合理的防冰、除冰措施提供參考依據(jù)。 本文依托國家重點基礎(chǔ)研究計劃973項目和南方電網(wǎng)超高壓檢修試驗中心《輸電線路覆冰預(yù)警方案與計算模型研究》項目,通過理論分析、仿真模擬、現(xiàn)場觀測及實際運行線路驗證等方法,,開展了以下研究工作: 在雪峰山自然覆冰試驗站對導(dǎo)線自然覆冰進(jìn)行長期現(xiàn)場觀測,分析了導(dǎo)線自然覆冰增長及影響因素;基于傳統(tǒng)量器具測量法和人工描繪導(dǎo)線覆冰截面形狀換算法,提出了用于現(xiàn)場人工測量導(dǎo)線覆冰厚度的覆冰形狀校正方法,并通過大量現(xiàn)場試驗觀測,得到了雪峰山試驗站導(dǎo)線覆冰形狀校正系數(shù)。 分析了風(fēng)荷載產(chǎn)生原理及其計算方法,研究了諧波合成法模擬脈動風(fēng)的數(shù)值模擬方法;并研究了輸電線路風(fēng)荷載經(jīng)驗計算公式及氣動力特性計算方法,基于導(dǎo)線荷載特性變化提出了等效計算風(fēng)荷載的新方法,利用雪峰山試驗站采集的數(shù)據(jù)計算了導(dǎo)線風(fēng)荷載,通過與經(jīng)驗公式法計算結(jié)果的對比,驗證了該方法的合理性。 基于流體力學(xué)理論,建立了新月形和扇形截面覆冰導(dǎo)線空氣動力參數(shù)仿真模型并提出了數(shù)值模擬方法,通過數(shù)值仿真分析了覆冰導(dǎo)線周圍空氣流場,研究了兩種截面覆冰導(dǎo)線在不同迎風(fēng)攻角、風(fēng)速、覆冰厚度條件下的升力系數(shù)和阻力系數(shù),得到了風(fēng)速、覆冰厚度和覆冰截面形狀對覆冰導(dǎo)線空氣動力參數(shù)的影響規(guī)律。 針對現(xiàn)有導(dǎo)線覆冰計算模型未考慮風(fēng)荷載引起的導(dǎo)線荷載特性變化或考慮不當(dāng)問題,運用力學(xué)原理并結(jié)合導(dǎo)線覆冰增長特性,以絕緣子串懸掛點拉力、傾角為基本參量,綜合考慮冰風(fēng)荷載影響因素,系統(tǒng)地建立了絕緣子串不同布置方式下(耐張串、I串及V串)輸電線路綜合荷載等值冰厚計算模型。 根據(jù)雪峰山自然覆冰試驗站長期大量的現(xiàn)場觀測和數(shù)據(jù)采集,對建立的綜合荷載等值冰厚計算模型進(jìn)行了試驗驗證;同時應(yīng)用C++開發(fā)相應(yīng)實現(xiàn)程序,將等值冰厚計算模型掛網(wǎng)于南方電網(wǎng)實際運行線路進(jìn)行工程應(yīng)用,利用覆冰監(jiān)測終端的監(jiān)測數(shù)據(jù)和采集的現(xiàn)場覆冰數(shù)據(jù)對建立的模型進(jìn)行了驗證。
[Abstract]:The icing of overhead lines is one of the important problems that affect the safe operation of the power network. The icing of conductors will lead to major accidents, such as galloping, wire breakage, inverted tower and insulator flashover, which seriously threaten the safe and reliable operation of the power grid. How to effectively predict the icing thickness of transmission lines and accurately monitor the ice growth of conductors has become an important research topic at home and abroad. It is of great significance to take anti-icing and de-icing measures in time after icing in power grid, thus avoiding the occurrence of major ice damage accidents. Scholars at home and abroad have put forward many models for prediction of conductor icing. However, due to the complexity of icing factors and inaccurate measurement of model parameters, the accuracy of model calculation has been questioned and has not been widely used in engineering. Therefore, it is not only of great theoretical reference value and academic significance to establish an accurate prediction model of conductor icing thickness and to monitor accurately the process of conductor icing growth, but also for the design and construction of anti-icing disaster reduction in power network. It can also provide reference for relevant departments to take reasonable anti-ice and deicing measures in time. This paper relies on the national key basic research plan 973 project and the project "study on early warning Scheme and Computational Model of Transmission Line icing" in the EHV maintenance Test Center of Southern Power Grid, through theoretical analysis, simulation and simulation. The following research work has been carried out: In Xuefeng Mountain natural icing test station, the natural icing of conductors was observed for a long time, and the growth of natural ice and its influencing factors were analyzed. A correction method of icing shape is proposed for measuring the ice thickness of conductors in the field, and the correction coefficient of the icing shape of conductors in Xuefeng Mountain Test Station is obtained by a large number of field test observations. The principle of wind load generation and its calculation method are analyzed, the numerical simulation method of harmonic synthesis method for simulating pulsating wind is studied, and the empirical formula for wind load calculation and aerodynamic characteristics calculation method of transmission line are studied. Based on the variation of traverse load characteristics, a new method for equivalent wind load calculation is proposed. The wind load of conductor is calculated by using the data collected from Xuefeng Mountain Test Station. The rationality of this method is verified by comparing with the results of empirical formula method. Based on the hydrodynamics theory, the aerodynamic parameters simulation models of crescent and sector-shaped ice-coated conductors are established and the numerical simulation method is proposed. The air flow field around ice-coated conductors is analyzed by numerical simulation. The lift coefficient and drag coefficient of two kinds of ice-coated conductors under different upwind attack angle, wind speed and ice thickness are studied. The influence of wind speed, ice thickness and ice section shape on aerodynamic parameters of ice-coated conductors is obtained. In view of the fact that the current calculation model of conductor icing does not consider the change of traverse load characteristics caused by wind load or the problem of improper consideration, the basic parameter is the suspension point tension and inclination angle of insulator string, which is based on the mechanics principle and the characteristics of conductor icing growth. Considering the influence factors of ice wind load, the equivalent ice thickness calculation model of transmission line under different arrangement of insulator string (tension string I string and V string) is established systematically. Based on a large number of field observation and data collection in Xuefeng Mountain Natural icing Test Station, the calculation model of equivalent ice thickness under comprehensive load is tested and verified, and the corresponding program is developed with C, The equivalent ice thickness calculation model is applied to the practical running line of Southern Power Grid, and the model is verified by the monitoring data of the icing monitoring terminal and the field icing data.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TM752
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蔣興良;;貴州電網(wǎng)冰災(zāi)事故分析及預(yù)防措施[J];電力建設(shè);2008年04期
2 關(guān)志成;張福增;王國利;龍彪;王黎明;;我國特高壓的特有技術(shù)問題[J];電力設(shè)備;2006年01期
3 黃新波;孫欽東;程榮貴;張冠軍;劉家兵;;導(dǎo)線覆冰的力學(xué)分析與覆冰在線監(jiān)測系統(tǒng)[J];電力系統(tǒng)自動化;2007年14期
4 陸佳政;蔣正龍;雷紅才;張紅先;彭繼文;李波;方針;;湖南電網(wǎng)2008年冰災(zāi)事故分析[J];電力系統(tǒng)自動化;2008年11期
5 邢毅;曾奕;盛戈v
本文編號:1853090
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1853090.html
最近更新
教材專著