高增益雙管升壓變換器研究
本文選題:非隔離 + 高增益 ; 參考:《南京航空航天大學(xué)》2014年碩士論文
【摘要】:出于可靠性和安全性的考慮,將單個(gè)光伏電池、燃料電池模塊并入電網(wǎng)是當(dāng)前的研究熱點(diǎn)之一。然而單個(gè)光伏電池、燃料電池模塊的輸出電壓較低,為了將這些電源并入電網(wǎng),或者用作不間斷電源,需要大幅度提升直流電壓等級(jí)以滿足后級(jí)逆變的需要,高增益、高效率直流功率變換技術(shù)已經(jīng)成為這些應(yīng)用場(chǎng)合的關(guān)鍵技術(shù)之一。 非隔離型高增益直流變換器略去了DC/AC/DC多級(jí)功率變換,在效率上更有優(yōu)勢(shì),此類變換器通常是基于傳統(tǒng)Boost變換器衍生而出的。與Boost變換器相比,雙管升壓變換器在獲得更高增益的同時(shí)能有效的降低開(kāi)關(guān)管的電壓/電流應(yīng)力,基于雙管升壓結(jié)構(gòu)衍生出的變換器由于繼承了其低應(yīng)力的特性而將獲得更高的變換效率,具有潛在的應(yīng)用價(jià)值。 論文首先介紹了理想情況下雙管升壓變換器的工作原理,隨后討論了變換器在實(shí)際應(yīng)用中,由于電路參數(shù)不一致而出現(xiàn)的功率開(kāi)關(guān)管不均壓的問(wèn)題,并提出了一種無(wú)源箝位電路實(shí)現(xiàn)了開(kāi)關(guān)管的均壓以降低其電壓應(yīng)力,提高變換器效率。分析了帶有無(wú)源箝位電路的雙管升壓變換器的各項(xiàng)性能,對(duì)比傳統(tǒng)Boost變換器具體說(shuō)明其優(yōu)勢(shì)。 其次,結(jié)合開(kāi)關(guān)電感、開(kāi)關(guān)電容等升壓?jiǎn)卧,提出多開(kāi)關(guān)單元雙管升壓變換器結(jié)構(gòu),得到了一系列多開(kāi)關(guān)電感/開(kāi)關(guān)電容組合雙管升壓變換器,并進(jìn)一步在開(kāi)關(guān)電感雙管升壓變換器的基礎(chǔ)上,推導(dǎo)出了抽頭電感雙管升壓變換器,簡(jiǎn)化了電路結(jié)構(gòu),,提升了變換器的電壓增益。給出了各變換器的穩(wěn)態(tài)工作原理及性能分析,對(duì)比傳統(tǒng)高增益變換器說(shuō)明其優(yōu)勢(shì),并分別制作了原理樣機(jī),進(jìn)行了相關(guān)的實(shí)驗(yàn)驗(yàn)證。 隨后,基于耦合電感升壓方式,提出了三繞組耦合電感雙管升壓變換器方案,在無(wú)源箝位拓?fù)涞幕A(chǔ)上采用有源箝位軟開(kāi)關(guān)技術(shù),實(shí)現(xiàn)了功率開(kāi)關(guān)管的零電壓開(kāi)關(guān),減小了開(kāi)關(guān)損耗,分析了各個(gè)變換器的穩(wěn)態(tài)工作原理以及變換器的各項(xiàng)參數(shù)性能,并分別制作了無(wú)源箝位、有源鉗位變換器原理樣機(jī),進(jìn)行了相關(guān)的實(shí)驗(yàn)驗(yàn)證與對(duì)比分析。 最后,論文提出了輸出側(cè)單電容/多電容兩大類耦合電感高增益變換器之間互相轉(zhuǎn)化以及單類三繞組耦合電感變換器拓?fù)渥陨硌堇[的方法,并列舉了各個(gè)電路的工作特性,通過(guò)實(shí)驗(yàn),驗(yàn)證了兩類耦合電感變換器之間相互轉(zhuǎn)換方法的正確性。結(jié)合光伏發(fā)電應(yīng)用背景,基于有源鉗位三繞組耦合電感雙管升壓變換器實(shí)現(xiàn)了光伏電池MPPT的功能。 論文研究的雙管升壓變換器不僅實(shí)現(xiàn)了電壓增益的拓展,有效降低了開(kāi)關(guān)管的電壓/電流應(yīng)力,而且減小了功率器件的損耗,提高了變換效率,具有重要的理論和應(yīng)用價(jià)值。
[Abstract]:For the sake of reliability and safety, it is one of the research hotspots to integrate single photovoltaic cell and fuel cell module into power grid. However, for a single photovoltaic cell, the output voltage of the fuel cell module is relatively low. In order to incorporate these sources into the power grid or to be used as an uninterruptible power supply, the DC voltage level needs to be substantially increased to meet the needs of the backstage inverter, high gain. High efficiency DC power conversion technology has become one of the key technologies in these applications. Non-isolated high-gain DC / DC converters, which usually derive from traditional Boost converters, are more efficient than DC/AC/DC multistage power converters. Compared with the Boost converter, the dual-transistor boost converter can obtain higher gain and reduce the voltage / current stress of the switch effectively. The converter derived from the dual-tube boost structure will have higher conversion efficiency because it inherits the characteristics of its low stress, so it has potential application value. This paper first introduces the working principle of the dual-switch boost converter under ideal conditions, and then discusses the problem of uneven voltage of the power switch due to the inconsistency of circuit parameters in the practical application of the converter. A passive clamping circuit is proposed to reduce the voltage stress and improve the efficiency of the converter. In this paper, the performance of dual-switch boost converter with passive clamping circuit is analyzed, and its advantages are illustrated in detail compared with traditional Boost converter. Secondly, a series of multi-switch inductance / switched capacitor combined dual-transistor booster converters are obtained by combining switching inductance, switching capacitor and other booster units. Furthermore, on the basis of switching inductance dual-transistor boost converter, a tap inductor dual-transistor boost converter is derived, which simplifies the circuit structure and improves the voltage gain of the converter. The steady-state operation principle and performance analysis of the converters are given. Compared with the traditional high-gain converters, the advantages are illustrated, and the principle prototypes are made, and the relevant experiments are carried out. Then, based on the coupling inductor boost mode, a three-winding coupled inductor dual-transistor boost converter is proposed. Based on the passive clamping topology, the active clamp soft switching technique is used to realize the zero-voltage switching of the power switch. The switching loss is reduced, the steady-state operation principle of each converter and the performance of the converter parameters are analyzed, and the prototype of passive clamping and active clamping converter is made, and the relevant experimental verification and comparative analysis are carried out. Finally, the paper presents a method to transform the output side single capacitor / multi capacitor coupling inductance high gain converter to each other and to deduce the topology of the single type three winding coupling inductance converter, and enumerates the working characteristics of each circuit. The correctness of the mutual conversion method between the two kinds of coupled inductance converters is verified by experiments. Based on the application background of photovoltaic power generation, the MPPT function of photovoltaic cell is realized based on active clamping three-winding coupling inductance dual-transistor booster converter. The dual-transistor boost converter studied in this paper not only achieves the expansion of voltage gain, effectively reduces the voltage / current stress of the switch, but also reduces the loss of the power device and improves the conversion efficiency. It has important theoretical and practical value.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM46
【共引文獻(xiàn)】
相關(guān)期刊論文 前1條
1 王炳楠;;幾種減少陰影遮擋造成光伏組件失配的方法分析比較[J];太陽(yáng)能;2013年17期
相關(guān)博士學(xué)位論文 前1條
1 吳小進(jìn);光伏陣列及并網(wǎng)逆變器關(guān)鍵技術(shù)研究[D];北京交通大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 郭镥;小容量單相光伏發(fā)電并網(wǎng)系統(tǒng)設(shè)計(jì)與研究[D];湖南大學(xué);2012年
2 花京華;分布式光伏系統(tǒng)PV陣列功率優(yōu)化及預(yù)測(cè)方法研究[D];浙江工業(yè)大學(xué);2012年
3 賀昌忠;基于dsPIC并網(wǎng)光伏微逆變器的研究與設(shè)計(jì)[D];華南理工大學(xué);2013年
4 林志慧;并網(wǎng)光伏微型逆變器研究[D];華南理工大學(xué);2013年
5 張景濱;光伏發(fā)電系統(tǒng)中微逆變器及MPPT的研究[D];天津大學(xué);2012年
6 王冰清;光伏發(fā)電系統(tǒng)MPPT技術(shù)研究[D];北京交通大學(xué);2014年
7 柴亞盼;光伏發(fā)電系統(tǒng)發(fā)電效率研究[D];北京交通大學(xué);2014年
8 姚光輝;光伏并網(wǎng)發(fā)電系統(tǒng)設(shè)計(jì)及MPPT技術(shù)研究[D];浙江大學(xué);2014年
9 伍魏;太陽(yáng)能光伏系統(tǒng)反激式微逆變器的研究[D];西安工業(yè)大學(xué);2014年
10 王燕云;局部陰影條件下光伏發(fā)電系統(tǒng)的優(yōu)化控制研究[D];青島大學(xué);2014年
本文編號(hào):1846973
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1846973.html