天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 路橋論文 >

基于機器學習與統(tǒng)計學模型的道路事故嚴重程度預測模型效果評價

發(fā)布時間:2024-05-16 21:56
  道路交通事故數(shù)據(jù)分析對于交通安全有著重要意義。事故分析的重要性在于可以揭示導致事故的不同類型因素的影響。道路事故風險模型的預測準確性需要不斷提高。數(shù)據(jù)挖掘方法可以用于道路交通事故數(shù)據(jù)分析。其中,統(tǒng)計學模型OP、MNL等以及機器學習模型CART,SVM,KNN,GNB和RF等均可用于道路交通事故的數(shù)據(jù)集分析。這給我們提供了去研究更加準確模型的機會。本文對比了基于具有不同建模邏輯的各種機器學習和統(tǒng)計學模型在道路事故損害程度預測中的精確度;谙愀鄄煌貐^(qū)委員會收集的道路事故數(shù)據(jù),將這些模型用于預測與各道路事故程度等級相對應的損害嚴重程度。本文計算并比較每個模型在測試數(shù)據(jù)集上的預測準確性,然后進行靈敏度分析以推斷解釋變量對道路事故嚴重程度判斷的重要性。并對比了OP和MNL統(tǒng)計學模型對于變量影響的估計。從靈敏度分析中,我們可以獲得五個選定的機器學習模型對于碰撞事故嚴重程度的影響大小。結(jié)果表明,盡管機器學習模型的方法存在過度擬合的問題,但其相比統(tǒng)計學模型的方法具有更高的預測準確性。RF,GNB,KNN,SVM和CART的致命事故分類準確率分別為82.77%,55.53%,82.82%,77.93...

【文章頁數(shù)】:85 頁

【學位級別】:碩士

【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
    1.1 Background
    1.2 Statistics Summary of Crash Contributing Factors
    1.3 Problem Statement and Intention of This Thesis
    1.4 Research Aim and Objectives
    1.5 Outline of the thesis
Chapter 2 Literature Survey
    2.1 Introduction
    2.2 Status of Road Safety
        2.2.1 Status of Road Safety around the World
    2.4 Literature Survey of Statistical Models for Crash Injury Severity
    2.5 Literature Survey of Machine Learning Models for Crash Injury Severity
    2.6 Summarization and Limitations
Chapter 3 Methodology for Crash Modeling
    3.1 Introduction
    3.2 The Design of Methodology
    3.3 Statistical Models
        3.3.1 Ordered Probit Regression Model
        3.3.2 Checking for Multi-Collinearity
        3.3.3 Multinomial Logistic Model(MNLM)Design
    3.4 Machine Learning Models
        3.4.1 Classification and Adaptive Regression Trees(CART)
            3.4.1.1 Data Set Portioning
            3.4.1.2 Choose Cost Function and Training Model
            3.4.1.3 Decision Tree Algorithm Advantages and Disadvantages
        3.4.2 Support Vector Machine
        3.4.3 Naive Bayes Classifier
            3.4.3.1 What is Bayes Theorem?
            3.4.3.2 Types of Naive Bayes Algorithm
            3.4.3.3 Representation Used By Naive Bayes Models
            3.4.3.4 Make Predictions with a Naive Bayes Model
            3.4.3.5 Na?ve Bayes Algorithm Advantages and Disadvantages
        3.4.4 K-Nearest Neighbors– Classification
            3.4.4.1 Algorithm
            3.4.4.2 K-NN Algorithm Advantages and Disadvantages
        3.4.5 Random Forest
            3.4.5.1 How does The Random Forests Algorithm work?
            3.4.5.2 Feature Importance
            3.4.5.3 Random Forest Algorithm Advantages and Disadvantages
Chapter 4 Crash Data Collection and Data Description
    4.1 Introduction
        4.1.1 Hong Kong Transportation Department Accident Data
        4.1.2 Variables Considered In the Study
    4.2 Data Preparation
        4.2.1 Based on Accident
        4.2.2 Based on Vehicle
        4.2.3 Based on casualty
    4.3 Data Pre-Processing
        4.3.1 Missing Data Treatment
        4.3.2 Data Normalization
    4.4 Estimation of Accuracy in Classification
    4.5 Models Selection by Performance Evaluation
Chapter 5 Data Analysis and Modeling Results
    5.1 Statistical Models Results
    5.2 Machine Learning Models Analysis Results
    5.3 Experiments and Results
        5.3.1 CART Experimental Results
        5.3.2 Support Vector Machine Results
        5.3.3 K-Nearest Neighbor Results
        5.3.4 Gaussian Na?ve Bayes Results
        5.3.5 Random Forest Results
    5.4 Results Comparison of Machine Learning Models
    5.5 Summary
Chapter 6 Discussion of Findings
    6.1 Sensitivity Analysis
    6.2 Comparison of Variable Impact on Crash Severity from ML Models
    6.3 Summary
Chapter 7 Conclusion and Recommendations
    7.1 Conclusion
    7.2 Recommendations
References
Acknowledgements
List of Figures
List of Tables
List of Acronyms



本文編號:3974965

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/3974965.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶fc0ce***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com